Кинетическая энергия: понятие. Работа

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ , энергия, которой обладает движущийся предмет. Получает ее, начав двигаться. Зависит от массы () предмета и его скорости (v ), согласно равенству: К. э. = 1/2mv 2 . При ударе преобразуется в другую форму энергии, такую как тепловая, звуковая или световая. см. также ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ .

Кинетическая энергия. Движущийся грузовик обладает кинетической энергией (А). Для того, чтобы увеличить его скорость, ему нужно сообщить дополнительную энергию, достаточную для преодоления трения и сопротивления воздуха, и увеличения скорости. Для того, чтобы понизить кинетическую энергию грузовика, необходимую для того чтобы кинетическая энергия была преобразована в тепловую энергию тормозов и шин (В), Кинетическая энергия нагруженного грузовика, двигающегося с такой же скоростью, будет больше из-за большей массы (С) и ему понадобится больше тормозной силы, чтобы растратить кине тическую энергию и остановиться на том же расстоянии, что и ненагруженный грузовик.


Научно-технический энциклопедический словарь .

С понятием работы тесно связано другое фундаментальное физическое понятие – понятие энергии. Поскольку в механике изучается, во-первых, движение тел, а во-вторых, взаимодействие тел между собой, то принято различать два вида механической энергии: кинетическую энергию , обусловленную движением тела, и потенциальную энергию , обусловленную взаимодействием тела с другими телами.

Кинетической энергией механической системы называют энергию, з ависящую от скоростей движения точек этой системы.

Выражение для кинетической энергии можно найти, определив работу равнодействующей силы, приложенной к материальной точке. На основании (2.24) запишем формулу для элементарной работы равнодействующей силы:

Так как
, то dА = mυdυ. (2.25)

Чтобы найти работу равнодействующей силы при изменении скорости тела от υ 1 до υ 2 проинтегрируем выражение (2.29):

(2.26)

Так как работа - мера передачи энергии от одного тела другому, то на

основании (2.30) запишем, что величина есть кинетическая энергия

тела:
откуда вместо (1.44) получаем

(2.27)

Теорему, выраженную формулой (2.30) принято называть теоремой о кинетической энергии . В соответствии с ней работа сил, действующих на тело (или систему тел), равна изменению кинетической энергии этого тела (или системы тел).

Из теоремы о кинетической энергии следует физический смысл кинетической энергии : кинетическая энергия тела равна работе, которую оно способно совершать в процессе уменьшения своей скорости до нуля. Чем больше «запас» кинетической энергии у тела, тем большую работу оно способно совершить.

Кинетическая энергия системы равна сумме кинетических энергий материальных точек, из которых эта система состоит:

(2.28)

Если работа всех сил, действующих на тело, положительна, то кинетическая энергия тела возрастает, если работа отрицательна, то кинетическая энергия убывает.

Очевидно, что элементарная работа равнодействующей всех приложенных к телу сил будет равна элементарному изменению кинетической энергии тела:

dА = dЕ к. (2.29)

В заключение заметим, что кинетическая энергия, как и скорость движения, имеет относительный характер. Например, кинетическая энергия пассажира, сидящего в поезде, будет разной, если рассматривать движение относительно полотна дороги или относительно вагона.

§2.7 Потенциальная энергия

Вторым видом механической энергии является потенциальная энергия – энергия, обусловленная взаимодействием тел.

Потенциальная энергия характеризует не любое взаимодействие тел, а лишь такое, которое описывается силами, не зависящими от скорости. Большинство сил (сила тяжести, сила упругости, гравитационные силы и т.д.) именно таковы; исключением являются лишь силы трения. Работа рассматриваемых сил не зависит от формы траектории, а определяется лишь её начальным и конечным положением. Работа таких сил на замкнутой траектории равна нулю.

Силы, работа которых не зависит от формы траектории, а зависит лишь от начального и конечного положения материальной точки (тела) называют потенциальными или консервативными силами .

Если тело взаимодействует со своим окружением посредством потенциальных сил, то для характеристики этого взаимодействия можно ввести понятие потенциальной энергии.

Потенциальной называют энергию, обусловленную взаимодействием тел и зави­сящую от их взаимного расположения.

Найдем потенциальную энергию тела, поднятого над землей. Пусть тело массой m равномерно перемещается в гравитационном поле из положения 1 в положение 2 по поверхности, сечение которой плоскостью чертежа показано на рис. 2.8. Это сечение является траекторией материальной точки (тела). Если трение отсутствует, то на точку дейст­вуют три силы:

1) сила N со стороны поверхности нормально поверхности, работа этой силы равна нулю;

2) сила тяжести mg, работа этой силы А 12 ;

3) сила тяги F со стороны некоторого движущего тела (двигатель внутреннего сгорания, электродвигатель, человек и т. п.); работу этой силы обозначим А T .

Рассмотрим работу силы тяжести при перемещении тела вдоль наклонной плоскости длиной ℓ (рис. 2.9). Как видно из этого рисунка, работа равна

А" = mgℓ соsα = mgℓ соs(90° + α) = - mgℓ sinα

Из треугольника ВСD имеем ℓ sinα = h, по­этому из последней формулы следует:

Траекторию движения тела (см. рис. 2.8) можно схематично представить небольшими участками наклонной плоскости, поэтому для, работы силы тяжести на всей траектории 1 -2 справедливо выражение

A 12 =mg (h 1 -h 2) =-(mg h 2 - mg h 1) (2.30)

Итак, работа силы тяжести не зависит от траектории тела, а зависит от различия в высотах расположения начальной и конечной точек траектории.

Величину

е п = mg h (2.31)

называют потенциальной энергией материальной точки (тела) массой m поднятой над землей на высоту h. Следовательно, формулу (2.30) можно переписать так:

A 12 = =-(En 2 - En 1) или A 12 = =-ΔEn (2.32)

Работа силы тяжести равна взятому с обратным знаком изменению потенциальной энергии тел, т. е. разности ее конечного и начального значений (теорема о потенциальной энергии ).

Подобные рассуждения можно привести и для упруго деформированного тела.

(2.33)

Отметим, что физический смысл имеет разность потенциальных энергий как величина, определяющая работу консервативных сил. В связи с этим безразлично, какому положению, конфигурации, следует приписать нулевую потенциальную энергию.

Из теоремы о потенциальной энергии можно получить одно очень важное следствие: консервативные силы всегда направлены в сторону уменьшения потенциальной энергии. Установленная закономерность проявляется в том, что любая система, предоставленная самой себе, всегда стремится перейти в такое состояние, в котором её потенциальная энергия имеет наименьшее значение. В этом заключается принцип минимума потенциальной энергии .

Если система в данном состоянии не обладает минимальной потенциальной энергией, то это состояние называют энергетически невыгодным .

Если шарик находится на дне вогнутой чаши (рис.2.10,а), где его потенциальная энергия минимальна (по сравнению с ее значениями в соседних положениях), то его состояние более выгодно. Равновесие шарика в этом случае является устойчивым : если сместить шарик в сторону и отпустить, то он снова возвратится в своё первоначальное положение.

Энергетически невыгодным, например, является положение шарика на вершине выпуклой поверхности (рис.2.10, б). Сумма сил, действующих при этом на шарик, равна нулю, и потому, этот шарик будет находится в равновесии. Однако равновесие это является неустойчивым : достаточно малейшего воздействия, чтобы он скатился вниз и тем самым перешёл в состояние энергетически более выгодное, т.е. обладающее меньшей

потенциальной энергией.

При безразличном равновесии (рис. 2.10, в) потенциальная энергия тела равна потенциальной энергии всех его возможных ближайших состояний.

На рисунке 2.11 можно указать некоторую ограниченную область пространства (например cd), в которой потенциальная энергия меньше, чем вне её. Эта область получила название потенциальной ямы .

Открытие закона сохранения импульса, который утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная, показало, что механическое движение тел имеет количественную меру, сохраняющуюся при любых взаимодействиях тел. Этой мерой является импульс. Однако только с помощью этого закона не получится дать полное объяснение всех закономерностей движения и взаимодействия тел.

Рассмотрим пример. Пуля массой 9 грамм, находящаяся в состоянии покоя, абсолютно безвредна. Но во время выстрела при соприкосновении с препятствием пуля деформирует его. Очевидно, что такой разрушительный эффект получается в результате того, что пуля обладает особой энергией.

Рассмотрим другой пример. Два одинаковых пластилиновых шара движутся навстречу друг другу с одинаковыми скоростями. При столкновении они останавливаются и соединяются в одно тело.

Сумма импульсов шаров до столкновения и после столкновения одинакова и равна нулю, закон сохранения импульсов выполняется. Что же происходит с пластилиновыми шарами при их столкновении, кроме изменения скорости движения? Шары деформируются и нагреваются.

Повышение температуры тел при столкновении можно наблюдать, например, при ударе молотка по свинцовому или медному стержню. Изменение температуры тела свидетельствует об изменениях скоростей хаотичного теплового движения атомов, из которого состоит тело. Следовательно, механическое движение не исчезло бесследно, оно превратилось в другую форму движения материи.

Вернёмся к вопросу, который мы ставили выше. Имеется ли в природе мера движения материи, сохраняющаяся при любых превращениях одной формы движения в другую? Опыты и наблюдения показали, что такая мера движения в природе существует. Её назвали энергией.

Энергией называется физическая величина, являющаяся количественной мерой различных форм движения материи.

Для точного определения энергии как физической величины необходимо найти её связь с другими величинами, выбрать единицу измерения и найти способы её измерения.

Механической энергией называется физическая величина, которая является количественной мерой механического движения.

В физике в качестве такой количественной меры поступательного механического движения при возникновении его из других форм движения или превращении в другие формы движения принята величина, равная половине произведения массы тела на квадрат скорости его движения. Эта физическая величина называется кинетической энергией тела и обозначается буквой Е с индексом к :

Е к = mv 2 / 2

Так как скорость является величиной, зависящей от выбора системы отсчёта, значение кинетической энергии тела зависит от выбора системы отсчёта.

Существуеттеорема о кинетической энергии. «Работа приложенной к телу равнодействующей силы равна изменению его кинетической энергии»:

А = Е к2 -Е к1

Данная теорема будет справедлива и когда тело движется под действием константной силы, и когда тело движется по действием изменяющейся силы, направление которой не совпадает с направлением перемещения. Кинетическая энергия – это энергия движения. Получается, кинетическая энергия тела массой m, движущегося со скоростью v равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

А = mv 2 / 2 = Е к

Если тело будет двигаться со скоростью v, то для его полной остановки необходимо совершить работу:

А = -mv 2 / 2 = -Е к

За единицу работы в международной системе принимается работа, совершаемая силой 1 Ньютон на пути 1 метр при движении по направлению вектора силы. Эта единица измерения работы называется Джоулем.

1 Дж = 1 кг · м 2 / c 2

Так как работа равна изменению энергии, для измерения энергии используется та же единица измерения, что и для измерения работы. Единица энергии в СИ – 1Дж.

Остались вопросы? Не знаете, что такое кинетическая энергия?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В § 88 выражение было названо кинетической энергией тела. Рассмотрим подробнее содержание этого понятия.

Допустим, что тело массы было вначале неподвижно (рис. 5.8). На него подействовала сила под действием которой тело прошло расстояние приобретя скорость При этом сила совершила работу и будет иметь место соотношение

Если взять другое тело массы и той же силой совершить такую же работу то для возникшего движения снова будет справедливо соотношение

где конечная скорость тела массы

Одна и та же работа силы сообщает телам с разной массой всегда один и тот же запас движения, и это выражается равенством

Таким образом, кинетическую энергию тела можно рассматривать как меру запаса движения данного тела. С помощью этой меры можно сравнивать между собой те запасы движения, которыми обладают различные тела или системы тел. Замечательно то, что эта мера учитывает любые движения независимо от их направления.

Поэтому она может быть использована для расчета не только упорядоченных движений тел, но и неупорядоченных, хаотических движений, происходящих в сложных системах многих тел. Используя, например, понятие кинетической энергии, можно количественно определить тот запас движения, которым обладает некоторая масса газа. Молекулы газа совершают непрерывные хаотические движения. Сумма кинетических энергий этих молекул определит энергию всей массы газа, т. е. даст количественную характеристику интенсивности теплового движения, запасенного в этом газе. Она также даст количественное представление о состоянии движения системы тел в целом.

Отметим, что получить представление о состоянии внутренних движений в системе тел с помощью вектора количества движения нельзя. Возьмем, например, два тела одинаковой массы которые движутся в противоположных направлениях с равными по модулю скоростями Количество движения каждого из тел будет равно Это дает представление о том, как движется каждое тело в отдельности. Количество же движения всей системы в целом, равное векторной сумме количеств движения отдельных тел, будет равно нулю.

Зная только этот результат (количество движения системы равно нулю), мы даже не можем сказать, движутся ли тела системы вообще. Кинетическая же энергия такой системы будет равна Зная это, во-первых, мы можем сделать вывод о том, что в данной системе тел есть движение, во-вторых, мы можем судить, насколько велик запас этого движения.

Рассмотрим случай, когда тело массы двигаясь со скоростью (рис. 5.9), встречается с другим телом (например пружинкой). При взаимодействии возникают силы, тормозящие движение тела и вызывающие деформацию или движение другого тела. Таким образом, оказывается, что движущееся тело при встрече с другими

телами может совершить некоторую работу по деформации или приведению этих тел в движение. Найдем эту работу.

По третьему закону Ньютона в любой момент времени сила действия тела на пружинку равна силе развиваемой пружинкой: Поэтому работа тела при его торможении равна работе пружинки с обратным знаком:

Подставляя получим

Это дает нам право утверждать, что кинетическая энергия любого тела определяет ту работу, которую может совершить движущееся тело во время остановки при взаимодействии с другими телами. Кинетическая энергия выступает как мера работоспособности движущегося тела. Об этом же говорит и происхождение самого слова «энергия». По-гречески слово «энергия» означает деятельность, работоспособность.

Итак, каждое движущееся тело способно произвести некоторое количество работы. Эта работа определяется массой и скоростью тела. Если тело во время взаимодействия совершает эту работу, то начинает исчезать движение тела. При совершении работы движение тела превращается в движение других тел или их частей. При этом может происходить и превращение механического движения в другие формы движения материи, например превращение механического движения в тепловое.

Окончательный вывод: кинетическая энергия является мерой запаса движения тела и одновременно определяет работу, которую тело способно совершить при взаимодействии с другими телами.

Кинетическая энергия равна половине произведения массы тела на квадрат его скорости:

Из уравнения ясно, что единицы кинетической энергии те же, что и единицы работы: (§ 89).

Кинетическая и потенциальная энергии.

Кинетическая энергия тела является мерой его механического движения и определяется работой, которую необходимо совершить, чтобы вызвать данное движение тела. Если сила F действует на покоящееся тело и вызывает его движение со скоростью v, то она совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Таким образом, работа силы F на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии тела, т. е. dA = dT.

Используя скалярную запись второго закона Ньютона F =mdv/dt и умножая обе части равенства на перемещение ds, получим

Так как

И

Таким образом, для тела массой т, движущегося со скоростью v, кинетическая энергия

Из формулы (12.1) видно, что кинетическая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее движения.

При выводе формулы (12.1) предполагалось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать закон Ньютона. В разных инерциальных системах отсчета, движущихся друг относительно друга, скорость тела, а, следовательно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетическая энергия зависит от выбора системы отсчета.

Потенциальная энергия - часть общей механической энергии системы, определяемая взаимным расположением тел и характером сил взаимодействия между ними.

Пусть взаимодействие тел осуществляется посредством силовых полей (например, поля упругих сил, поля гравитационных сил), характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного
положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Такие поля называются потенциальными, а силы, действующие в них,- консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такие силы называются диссипативными; примером их являются силы трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией П, которая определяется с точностью до некоторой произвольной постоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциальную энергию какого-то определенного положения тела считают равной нулю (выбирают нулевой уровень отсчета), а энергию других положений отсчитывают относительно нулевого уровня.

Потенциальная энергия тела обычно определяется работой, которую совершили бы действующие на него внешние силы, преодолевающие консервативные силы взаимодействия, перемещая его из конечного состояния, где потенциальная энергия равна нулю, в данное положение. Работа консервативных сил, приложенных к телу, равна изменению потенциальной энергии этого тела, взятому с обратным знаком, т. е.

так как работа совершается за счет убыли потенциальной энергии.

Поскольку работа dA есть скалярное произведение силы F на перемещение dr, то выражение (12.2) можно записать в виде

Следовательно, если известна функция П(г), то (12.3) полностью определяет силу F по модулю и направлению. В случае консервативных сил

или в векторном виде

где символом grad П обозначена сумма

(12.5)

где i, j, k- единичные векторы координатных осей. Вектор, определяемый выражением (12.5), называется градиентом скаляра П. Для него наряду с обозначением grad П применяется также обозначение Ñ П. Ñ(«набла») означает символический вектор, называемый оператором Гамильтона или набла-оператором:

(12.6)

Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой m, поднятого на высоту h над поверхностью Земли, равна

, (12.7)

где h - высота, отсчитанная от нулевого уровня, для которого П 0 = 0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести: при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (кинетическая энергия всегда положительна!). Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне тахты (глубина h"),