Получить искусственный холод нельзя способом. Физические основы получения искусственного холода

-> 13.04.2011 - Способы получения холода и характеристики источников охлаждения

Получение холода сводится к уменьшению содержания тепла в твердом теле, жидкости или газе. Охлаждение - это процесс отнятия тепла, приводящий к понижению температуры или изменению агрегатного состояния физического тела. Различают естественное и искусственное охлаждение.

Естественное охлаждение — это отвод тепла от охлаждаемого тела в окружающую среду. При этом способе температуру охлаждаемого тела можно понизить только до температуры окружающей среды. Это самый простой способ охлаждения без затраты энергии.

Искусственное охлаждение — это охлаждение тела ниже температуры окружающей среды. Для искусственного охлаждения применяют холодильныр машины или холодильные установки. При этом способе охлаждения необходимо затратить энергию.

Существует несколько способов получения искусственного холода. Самый простой — охлаждение с помощью льда или снега. Ледяное охлаждение имеет существенный недостаток — температура охлаждения ограничена температурой таяния льда. В качестве охладителей используют водный лед, льдосоляные смеси, сухой лед и жидкие холодильные агенты (хладоны и аммиак).

Льдосоляное охлаждение производится с применением дробленого водного льда и соли. Из-за добавления соли скорость таяния льда увеличивается, а температура таяния льда опускается. Охлаждение сухим льдом основано на действии твердого диоксида углерода — при поглощении тепла сухой лед переходит из твердого состояния в газообразное. С помощью сухого льда можно получить более низкую температуру, чем при использовании водного льда: охлаждающее действие 1 кг сухого льда почти в 2 раза больше, чем 1 кг водного льда, при охлаждении не возникает сырости, выделяемый газообразный диоксид углерода обладает консервирующими свойствами, способствует лучшему сохранению продуктов. Сухой лед применяется при перевозках замороженных продуктов, охлаждении фасованного мороженого, хранении

Наиболее распространенным и удобным при эксплуатации является машинное охлаждение. По сравнению с другими видами охлаждения машинное охлаждение обладает следующими преимуществами:

  • возможностью создания низкой температуры в широких пределах;
  • автоматизацией процесса охлаждения;
  • доступностью эксплуатации и технического обслуживания и др.

Машинное охлаждение получило в торговле наибольшее распространение в связи с рядом достоинств:

  • автоматическим поддержанием постоянной температуры хранения в зависимости от вида продуктов;
  • рациональным использованием полезной емкости для охлаждения продуктов, удобством обслуживания;
  • высокой экономичностью и возможностью создания необходимых санитарно-гигиенических условий хранения продуктов.

В основу машинного охлаждения положено свойство некоторых веществ кипеть при низкой температуре, поглощая при этом большое количество теплоты из окружающей среды. Такие вещества называют холодильными агентами (хладагентами).

Хладагенты — это рабочие вещества паровых холодильных машин, с помощью которых обеспечивается получение низких температур. Хладагенты должны иметь высокую теплоту парообразования, низкую температуру кипения, высокую теплопроводность. Вместе с тем хладагенты не должны быть взрывоопасными, легко воспламеняющимися, ядовитыми. Важное значение имеет стоимость хладагентов. Наиболее отвечающим этим требованиям являются хладон 12, хладон 22 и аммиак. Хладон поступает в торговые предприятия в металлических баллонах, окрашенных в алюминиевый цвет и имеющих условную маркировку R12 или .

Работа паровой компрессионной холодильной машины.Стандартный цикл.

Цикл паровой компрессионной холодильной машины - это термодинамический процесс, в котором жидкий хладагент испаряется, сжимается и конденсируется в непрерывном цикле для охлаждения камеры или пространства.

Термодинамический цикл - это два или больше связанных процесса, которые в конечном счете возвращают рабочую жидкость к начальному состоянию.Цикл связанных процессов системы машинного охлаждения называют циклом паровой компрессионной холодильной машины. Простой цикл паровой компрессионной холодильной машины.

Простой цикл паровой компрессионной холодильной машины состоит из четырех основных процессов: расширение, испарение, сжатие и конденсация. В данных процессах давление, температура и состояние хладагента меняются. В каждом отдельном процессе свойства хладагента меняются. Но в конце последнего процесса хладагент возвращается в начальное состояние с теми же качествами, которые у него были в начале первого процесса, и образуется цикл. Компоненты для выполнения данных процессов представлены в предыдущем разделе.

Для понимания цикла паровой компрессионной холодильной машины необходимо сначала рассмотреть каждый процесс отдельно. При понимании отдельных процессов можно проанализировать их относительно других процессов, которые составляют цикл. Необходимо понимать взаимосвязь процессов, так как изменения в одном процессе вызывают соответствующие изменения в других, которые составляют цикл паровой компрессионной холодильной машины.

Хладагент в ресивере находится в жидком и газообразном состояниях при высокой температуре и давлении. В течение цикла жидкий хладагент переходит в жидкостный трубопровод, а затем в регулятор расхода хладагента.

Хладагент у входного отверстия регулятора расхода находится в жидком состоянии при высокой температуре и давлении. При проходе хладагента через маленькое отверстие клапана или капиллярной трубки его давление уменьшается до давления испарителя. Снижение давления хладагента производит соответствующее уменьшение температуры насыщения жидкого хладагента. В результате часть хладагента закипает и понижает температуру остальной жидкости. Парожидкостная смесь выходит из регулятора расхода хладагента и попадает в испаритель.

Хладагент у входного отверстия испарителя — это прохладная парожидкостная смесь с низкой температурой и давлением. Остальная жидкость испаряется при температуре насыщения, соответственно давлению в испарителе. Испаряющаяся жидкость поглощает скрытую теплоту в камере. Пар на выходе из испарителя немного перегрет, чтобы предотвратить попадание жидкости в компрессор.

Хладагент у входного отверстия компрессора — это перегретый пар при более низкой температуре и давлении. Компрессор вызывает движение хладагента благодаря зоне низкого давления в цилиндрах при всасывании. Так как давление в цилиндре ниже, чем давление пара в испарителе, хладагент поступает через всасывающий трубопровод в компрессор благодаря разнице давлений. Во всасывающем трубопроводе пар поглощает теплоту из окружающей среды, что еще более увеличивает его перегрев. При сжатии температура и давление пара увеличиваются, и нагретый пар под давлением выбрасывается в нагнетательный трубопровод.

Хладагент у входного отверстия конденсатора - это перегретый пар при высокой температуре и давлении. Так как температура окружающей среды конденсатора ниже, чем температура насыщения пара, хладагент конденсируется. Таким образом, скрытая теплота парообразования, поглощенная в испарителе, передается наружу из камеры. К тому времени, когда хладагент достигает нижней части конденсатора, он отдает достаточно сухой и скрытой теплоты, конденсируется и становится немного холоднее. Жидкость выходит из конденсатора и поступает к ресиверу в том же состоянии, в котором вышла из него. Цикл заканчивается.1

Для охлаждения воды или рассола, а также для непосредственного охлаждения воздуха в практике кондиционирования используют естественные и искусственные источники холода.

Естественными источниками холода могут быть артезианская вода, вода горных рек и лед. К искусственным источникам относят парокомпрессионные, пароводяные и воздушные холодильные машины. В установках кондиционирования чаще других применяют парокомпрессионные машины.

Охлаждение и осушение воздуха часто происходит при начальной температуре воды 8-10°. Воду при такой температуре можно получить из артезианских источников. В горных районах температура речной воды обычно не превышает 5°. В случае применения артезианской воды или из горной реки необходимо непрерывно менять такую воду по мере повышения ее температуры. Холодная вода в таких установках непосредственно из сети или с подкачкой насосом подается в кондиционер, где она нагревается, а затем сбрасывается в водосток или используется для производственных нужд.

Применение артезианской воды в некоторых случаях имеет известные экономические преимущества по сравнению с искусственными источниками холода. Если для отведения нагретой воды в водоем необходимы водостоки большой протяженности, целесообразность использования артезианской воды следует установить путем технико-экономических сравнений.

Одним из недостатков артезианской воды как источника холода является довольно высокая ее температура, не позволяющая в ряде случаев обеспечить необходимое осушение обрабатываемого воздуха.

Лед в качестве источника холода можно применять для небольших установок кондиционирования воздуха. При этом качество льда должно удовлетворять санитарно-гигиеническим требованиям.

Искусственные источники холода в отличие от естественных имеют преимущество в том, что не требуется пополнять в них охлаждающую среду.

Процессы, протекающие в парокомпрессионных холодильных машинах, связаны с изменением агрегатного состояния холодильного агента, циркулирующего в системе.

В наших рассказах о различных современных технологиях, позволяющих рационально использовать энергию и получать ее из так называемых альтернативных источников, мы упустили такой важный инструмент как тепловой насос. Тепловые насосы становятся все более распространенными в развитых странах из-за растущих цен на энергоносители и высокой эффективности этих самых тепловых насосов. О реалиях применения тепловых насос у нас читайте статью о перспективах использования тепловых насосов на русском и украинском языках.

Тепловой насос - устройство для переноса тепловой энергии от источника низкопотенциальной тепловой энергии (с низкой температурой) к потребителю (теплоносителю) с более высокой температурой. В основе работы теплового насоса лежит физический принцип – так называемый «цикл Карно», который был разработан и описан еще в 19-м веке. Цикл Карно назван в честь французского физика Сади Карно, который впервые его исследовал в 1824 году. Но техническая возможность воплощения идеи в жизнь появилась только в 20-м веке.


“Сколько нужно снежков, чтобы натопить печь?” - так иронизировал двести лет тому назад знаменитый философ Д. Дидро. Его насмешливый вопрос, как оказалось не лишен смысла.

Теоретически источником тепла может быть любое вещество, температура которого выше абсолютного нуля: воздух, скалистая порода, вода и даже снег. Вспомните, как работает самый обыкновенный домашний холодильник. Ведь теплота, отнимаемая от охлаждаемых продуктов, теплота конденсации и теплота замерзания влаги, т. е. теплота образования снега и его охлаждения, выделяется из холодильника и обогревает комнату. В этом легко убедиться, приложив руку к задней, иногда боковой, стенке холодильника: она всегда теплая.


Таким образом, холодильная машина может с успехом служить и для отопления. Вместо того, чтобы прямо расходовать электроэнергию на электрические тэны, обогревающие дом, может лучше ее использовать для осуществления термодинамического цикла и отапливать с ее помощью дом снегом? Докажем, что это вполне возможно.

Пусть температура снега на улице -3°С (предположим, что зима теплая, сущность вопроса это не изменит, а расчет упростит; можно снег заменить холодной водой из реки или хоть даже из Ледовитого океана - будет еще выгоднее). Температуру отопительных приборов в здании установим 27° С. Разность температур равна 30° С. Абсолютная температура нагревателя 27 + 273 = 300 К. КПД тепловой машины, работающей между такими близкими температурными пределами, очень мал - всего только 0,1. (КПД=30/300=0,1). Это значит, что если мы захотим получать в такой машине работу, то из каждых 10 Дж тепла, полученных от нагревателя, в самом лучшем случае мы можем превратить в работу только 1 Дж.

Но если мы заставим ту же машину работать в обратном направлении, то, затратив работу, эквивалентную только 1 Дж, сможем передать нагревателю (печке) целых 10 Дж, из которых 9 Дж будут получены от холодильника (снега). Рассмотрим как же работает тепловой насос:

1. Теплоноситель, проходя по трубопроводу, уложенному, например, в землю нагревается на несколько градусов. Внутри теплового насоса теплоноситель, проходя через теплообменник, называемый испарителем, отдает собранное из окружающей среды тепло во внутренний контур теплового насоса.


2. Внутренний контур теплового насоса заполнен хладагентом. Хладагент, имея очень низкую температуру кипения, проходя через испаритель, превращается из жидкого состояния в газ. Это происходит при низком давлении и низкой температуре.

3. Из испарителя газообразный хладагент попадает, в компрессор, где он сжимается, его температура повышается.

4. Далее горячий газ поступает во второй теплообменник (конденсатор). В конденсаторе происходит теплообмен между горячим газом и теплоносителем из обратного трубопровода системы отопления дома. Хладагент отдает свое тепло в систему отопления, охлаждается и снова переходит в жидкое состояние, а нагретый теплоноситель системы отопления поступает к отопительным приборам.

5. При прохождении хладагента через редукционный клапан - давление понижается, хладагент попадает в испаритель, и цикл повторяется снова.


Тепловые насосы используются в холодное время года для отопления помещения, а в теплое время года их используют для охлаждения воздуха в доме. Принцип работы такого насоса при охлаждении помещения такой же, как и при отоплении. Только тепло в этом случае забирается из воздуха в помещении и отдается земле или водоему.

В данном случае принцип работы теплового насоса практически полностью совпадает с принципом работы холодильника.

В общем, тепловой насос - это просто другое название холодильника, который представляет собой машину Карно, работающую в обратном направлении. Холодильник перекачивает тепло из охлаждаемого объема в окружающий воздух. Если поместить холодильник на улице, то, извлекая тепло из наружного воздуха и передавая его вовнутрь дома, то можно таким нехитрым способом обогревать помещение.


Отопление дома тепловыми насосами

Если вам понравился этот материал, то предлагаем вам подборку самых лучших материалов нашего сайта по мнению наших читателей. Подборку - ТОП об экологически безопасных технологиях, новой науке и научных открытиях вы можете найти там, где вам максимально удобно

Компрессорные холодильные установки являются основными потребителями электроэнергии на предприятиях по переработке и хранению скоропортящихся пищевых продуктов, что требует изыскивать резервы для экономии энергоресурсов. Поскольку для большей части территории нашей страны характерны продолжительные зимы с низкими температурами воздуха, весьма перспективным направлением экономии энергоресурсов является широкое применение естественного холода. Отметим несколько направлений использования естественного холода.

Наиболее простым и распространенным способом является непосредственная подача холодного воздуха в камеры охлаждения или хранения продуктов, когда наружная температура воздуха равна или ниже требуемой в камерах. В наружных стенах делаются отверстия для забора воздуха с помощью вентилятора и выпуска его через лепестковый обратный клапан (рис. 94). Раздача воздуха в камере производится через воздуховод с регулируемыми окнами, которые автоматически закрываются шиберами при остановке вентилятора. Температура в камере поддерживается двухпозиционным реле температуры, включающим или отключающим вентилятор. При размещении в камере неупакованных продуктов на всасывании вентилятора необходимо установить фильтры очистки воздуха от пыли и микроорганизмов (например, ЛАИК СП-6/15 или ЛАИК СП-6/15А). Установлено, что в районах с относительной влажностью воздуха 85 % и выше в камерах с неупакованной продукцией можно применять наружный воздух без увлажнения. В других случаях предусматривается система увлажнения воздуха. Учитывая сезонность использования естественного холода, целесообразно сочетать в камерах оборудование для естественного и искусственного охлаждения. При работе с искусственным охлаждением в летний период отверстия в ограждениях закрываются теплоизолированными люками. Для основных районов массового выращивания картофеля и овощей период хранения совпадает с периодом устойчивого стояния достаточно низких температур наружного воздуха. В связи с этим получает широкое распространение способ хранения продукции насыпью в условиях активного вентилирования с использованием естественного холода. Подача наружного воздуха осуществляется вентилятором в воздуховод переменного сечения, расположенный под перфорированным полом хранилища (рис. 95). Подаваемый воздух увлажняется, проходит через продукты снизу вверх и удаляется из хранилища через дефлектор. Вентилятор и увлажнитель автоматически включаются в работу по сигналу от датчиков дифференцированных терморегуляторов при температуре наружного воздуха на 2…3°С ниже температуры, которую имеет масса продукта. Увлажнение воздуха осуществляется водяным паром или распылением воды. Оптимальные значения влажности воздуха перед поступлением к продукту 90 % и более, а удельного расхода воздуха на 1 т продукции - более 100 м 3 /ч.

В молочной промышленности также широко распространено охлаждение хладоносителя с помощью наружных теплообменных аппаратов или в градирнях. В качестве теплообменных аппаратов можно использовать стандартные воздухоохладители с высокой степенью оребрения и мощными вентиляторами (например, ВОГ-230), устанавливаемые вне помещения (на крыше компрессорного цеха). Учитывая ограниченное время работы теплообменных аппаратов, использующих природный холод, общая схема циркуляции хладоносителя (воды, рассолов) должна быть мобильной и иметь переключения в расчете на разные режимы работы: охлаждение хладоносителя только наружными теплообменными аппаратами; совместная работа наружных аппаратов и испарителей холодильной установки; охлаждение хладоносителя только в испарителях холодильной установки. В зимнее время ледяную воду можно получать в градирнях при полном или частичном отключении холодильного оборудования. На рис. 96 показана схема подключения градирни для охлаждения хладоносителя, работающая в трех режимах: аккумулирование холода в ночное время, контур циркуляции хладоносителя (градирня - бак - насос); охлаждение технологического оборудования аккумулированным холодом и подохлаждение хладоносителя в градирне; охлаждение хладоносителя в испарителе. Параметром, по которому выбирается тот или иной способ охлаждения, является температура хладоносителя, поступающего в технологические аппараты.

Стандартные градирни типа ГПВ используются для получения воды с температурой 1…4°С при наружной температуре воздуха –5 °С и ниже. Недостатком устройства пленочных градирен является льдообразование на элементах конструкции, что приводит к резкому уменьшению количества циркулирующего воздуха и. повышению температуры охлажденной воды. Этот недостаток устранен в установке марки Я10-ОУ0 для естественного охлаждения в зимнее время циркуляционной воды. Она обеспечивает охлаждение воды от 10 до 5±1°С при температуре окружающего воздуха от –5 °С и ниже. В летний период установка выполняет функции градирни в системе оборотного водоснабжения. Для периодического удаления льда предусмотрена система оттаивания. Градирня монтируется на открытой площадке с обеспечением свободного слива из поддона в блок накопления, при этом разность отметок между сливным патрубком поддона и уровнем воды в блоке накопления не менее 1 м.
Заслуживает особого внимания способ аккумуляции зимнего холода путем намораживания ледяных буртов, позволяющий значительную часть летнего времени обходиться без машинного охлаждения, что дает экономию энергоресурсов, смазочных материалов, увеличивает срок службы оборудования.
Еще один резерв экономии электроэнергии за счет естественного холода - применение воздушных конденсаторов, которые можно использовать в качестве форконденсаторов в сочетании с кожухотрубными и испарительными конденсаторами. В зимний период воздушные форконденсаторы могут взять на себя всю тепловую нагрузку от установки, при этом температура конденсации может быть сколь угодно низкой, что приводит к экономии электроэнергии на выработку холода. Использование природного холода для охлаждения является неисчерпаемым источником эффективных технических решений, причем сочетанием двух и более видов естественного охлаждения могут быть достигнуты достаточно высокие технико-экономические показатели.

В нашем воображении само понятие «теплофизика» обычно связывается с производством тепла, эффективностью сжигания топлива, с получением энергии. Понятно, что для жителей Сибири тепло стоит на более важном месте, нежели холод. Тем не менее, производство холода – это тоже одна из актуальных задач для ученых, работающих в области теплофизики. И самое примечательное – для производства холода они предлагают привлекать всё то же тепло!

Зачем нужно производить холод, думаю, многим из нас понятно. Холод нужен для хранения продуктов, для создания благоприятного микроклимата в помещениях, для определенных производственных процессов. У каждого из нас в доме стоит холодильник, все нормальные общественные здания оборудованы кондиционерами. Представьте себе кафе, магазин, гостиницу или бизнес-центр без кондиционера, и вы поймете, что система охлаждения не менее важна, чем система отопления, даже если речь идет о Сибири. Зимой, ясное дело, мы нуждаемся в тепле. А летом? Лето в наших краях тоже иногда бьет рекорды по жаре. А уж про южные страны и говорить нечего.

Короче говоря, современные параметры комфорта и потребность в хранении продуктов так или иначе требуют производства холода. И надо сказать, что из года в год потребность в искусственном холоде увеличивается как в России, так и за рубежом.

Как производят холод? На сегодняшний день существует два основных типа холодильных машин – парокомпрессионные холодильные машины и абсорбционные бромистолитиевые машины. Первый тип нам хорошо известен – так устроены наши бытовые холодильники, работающие от электросети. Работа таких машин основана на изменении агрегатных состояний холодильного агента – хладона (фреона) – под воздействием механической энергии. Для превращения электрической энергии в механическую здесь, как мы знаем, используются компрессоры.

Что касается холодильных машин второго типа, то их работа основана на химическом взаимодействии веществ рабочей пары – абсорбента и хладогента, и изменении агрегатного состояния хладогента под воздействием тепловой энергии. Иначе говоря, для своей работы такие машины используют тепло.

И вот здесь мы как раз и подходим к самому важному моменту, касающемуся холодильных машин второго типа. Так вот, если в первом случае нам для производства холода необходимо тратить электроэнергию, то во втором случае мы вполне можем использовать «лишнее» тепло, которое при иных обстоятельствах очень часто вылетает в трубу (в буквальном смысле). Конечно, греющими источниками для таких машин могут служить и обычные энергоресурсы – газ или мазут, но также можно вовсю использовать пар из котельных, промежуточные отборы ТЭЦ, горячую воду, дымовые газы или отходящие пары производств. Иначе говоря, тепло, выбрасываемое в атмосферу, благодаря абсорбционным машинам вполне пригодно для производства холода. То есть, в этом случае нет необходимости тратить ценные энергоресурсы - достаточно рачительно использовать «излишки» тепла, коих особенно много образуется как раз в летний период, когда имеет смысл охлаждать помещения.

Надо сказать, что экономичность – это одно из важнейших преимуществ абсорбционных бромистолитиевых холодильных машин перед парокомпрессионными. Как мы понимаем, в условиях постоянного роста тарифов на электроэнергию это становится особенно важно.

Другое немаловажное преимущество – экологичность, связанная с отсутствием хладонов (фреонов), применение которых ограничено во многих странах в соответствии с Монреальским и Киотским протоколами. На бромистолитиевые машины подобные ограничения не распространяются. Используемый здесь в качестве абсорбента водный раствор бромистого лития является нелетучим и нетоксичным, относящимся к малоопасным веществам.

Еще одно преимущество связано с низким уровнем шума при роботе. Также можно упомянуть простоту в обслуживании, длительный срок службы и пожаро- и взрывобезопасность.

Благодаря указанным преимуществам такие машины в состоянии найти широкое применение как в быту, так и в хозяйственной деятельности. Спектр их применения достаточно широк – от металлургических предприятий, атомных электростанций, нефтехимических комбинатов – до тепличных хозяйств, многоквартирных домов, торговых центров и прочих общественных зданий, где требуется создать комфортный микроклимат. И самое важное (подчеркнем еще раз), этого комфорта можно добиться при минимальных затратах электроэнергии!

Разрабатывают ли в нашей стране такие машины? Да, разрабатывают! И даже производят. Как раз такой образец, разработанный специалистами Института теплофизики СО РАН, производится в Кемеровской области. Причем важно заметить, что отечественные машины обладают некоторыми преимуществами в сравнении с иностранными. Например, они, что называется, «подстраиваются» под конкретного потребителя. Наши специалисты используют гибкую систему проектирования и осуществляют сборку на самом объекте. Причем, заказчикам они могут предложить машину очень большой мощности – до 5,3 МВт. Кроме того, учитывая сложные реалии, разработчики предусмотрели – специально для аварийных случаев – дублирование автоматической системы управления ручной системой (с помощью «кнопочек»).

Однако такой индивидуальный подход выявил и свои слабые места. Речь идет о рыночной конкуренции с зарубежными серийными образцами (поступающими, главным образом, – из Китая). Так, зарубежные производители, «штампующие» такие машины на конвейере, в состоянии прибегнуть к демпингу. А если говорить о китайцах, то те вообще могут рассчитывать на государственную поддержку, осуществляя завоевание российского рынка. Нашим производителям государство помогать не собирается (и не будет).

Так что пока еще о серийном производстве отечественных машин речь не идет. Это, конечно, только в планах. Поэтому в настоящее время (что очень важно), специалисты ИТ СО РАН доводят свое детище до совершенства, максимально подстраиваясь под запросы каждого потребителя. Возможно, в этом индивидуальном подходе есть свой плюс. Не исключено, что такая вот «ручная сборка» когда-нибудь станет показателем высокого качества и будет высоко оценена на рынке.