Производство электроэнергии альтернативный источник энергии. Перспективы использования альтернативных источников энергии

Предисловие

Солнце и ветер как альтернативные источники энергии известны давно, хотя в России они распространены не так широко, как в европейских странах.

Cодержание

Традиционными источниками энергии является органическое топливо, но запасы угля, газа и нефти ограничены. Поэтому приходится искать альтернативные источники энергии – возобновляемые, а потому неиссякаемые. Потратившись на установку лишь единожды, использование альтернативных источников энергии возможно пожизненно – конечно, при условии периодического ухода за установками.

Какие бывают альтернативные источники энергии, и как они используются, вы узнаете на этой странице.

Солнце и ветер как альтернативные источники энергии известны давно, хотя в России они распространены не так широко, как в европейских странах. Однако обойти вниманием этот бесплатный природный ресурс для получения электрической энергии невозможно. Тем более что применение альтернативных источников энергии не только экономически довольно выгодно, но и экологически безопасно.

Ветер является альтернативным источником энергии

Одним из условий, которые позволят использовать энергию ветра в качестве альтернативного источника энергии, является необходимость иметь ветряк - ветроэнергетическую установку. Кроме того, важно иметь дом на территории, где сильные ветры не редкость, хотя и небольших порывов будет достаточно для работы ветряка мощностью 1,5-4 кВт. Такой альтернативный источник энергии для дома вполне обеспечит скромные потребности: свет, просмотр телевизора, подзарядку ноутбука. Для этого достаточно установки мощностью 500-600 Вт.

Данный вид альтернативного источника энергии представляет собой конструкцию, состоящую из следующих элементов:

ветроголовки с тремя лопастями,

генератора,

опорно-поворотного узла,

контроллера,

зарядного устройства,

аккумулятора,

инвертора.

Ветроэнергетическая установка работает так: лопасти, зафиксированные на колесе, приходят во вращение под воздействием ветра; колесо сообщает крутящий момент на вал генератора, который вырабатывает энергию. Между ее количеством и размером колеса есть прямая зависимость: чем больше колесо, тем легче оно захватывает ветер, тем больше энергии вырабатывается. Энергия поступает в зарядное устройство, которое трансформирует ее в постоянный электрический ток, необходимый для зарядки аккумуляторов. Всеми процессами управляет контроллер. Для получения переменного тока, на котором работает вся бытовая техника, имеется инвертор.

Чтобы смонтировать этот альтернативный источник электрической энергии, необходимо подготовить бетонный фундамент, включающий закладной элемент (железобетонное кольцо), залитый раствором. Стальную мачту в вертикальном положении удерживают растяжки.

В настоящее время приобрести ветроэнергетическую установку, причем не только импортного, но и отечественного производства, не проблема. Понятно, что стоимость ее напрямую зависит от мощности, например ветроэнергетическая установка в 1 кВт (она даст 120 кВт в месяц) обойдется примерно в 35 000 руб.

Фото этого альтернативного источника энергии можно посмотреть здесь:

К альтернативным источникам энергии относят солнечные батареи

Наличием сильных ветров на территории России могут похвастаться не все регионы. Это же относится и к солнечным дням, количество которых в разной местности различно, хотя даже сильная облачность не мешает получать 100 Вт с 1 м2. Чтобы выработать 10 кВт энергии, необходимо, чтобы площадь солнечных батарей составляла 100 м2.

Чтобы использовать солнце как альтернативный источник энергии, солнечную энергию нужно преобразовать в электрическую. Для этого потребуются специальные элементы, сам же процесс трансформации называется фотоэлектрическим эффектом, а модуль, использующийся для этого,- фотоэлектрическим элементом.

По обе стороны фотоэлемента смонтированы токоотводы. Когда солнечные лучи попадают на фотоэлемент, часть света (фотон) поглощается. При этом освобождается один электрон. В этот момент образуется ток. Электричество, образованное в солнечном элементе, может сразу использоваться или накапливаться в аккумуляторной батарее. Отдельные фотоэлементы не в состоянии обеспечить дом необходимым количеством энергии, поэтому их собирают в панели, различные по размеру и типу. Как правило, для использования солнечной энергии как альтернативного источника энергии панели собирают в кремниевые фотоэлектрические модули, размер которых варьируется от 0,4 до 1,6 м2, мощностью 40-160 Вт.

Применение солнечной энергии как альтернативного источника электрической энергии

Будучи объединенными, панели образуют солнечные батареи - альтернативный источник энергии, коэффициент полезного действия которого пока невелик и составляет 5-15% (только 15% света преобразуется в электрическую энергию).

Комплекс солнечных батарей с контроллером, инвертором, аккумуляторами, кабелем, электронагрузкой и поддерживающей структурой называется солнечной станцией, которая может рассматриваться и применяться в качестве системы аварийного источника электроснабжения.

Стоимость станции из четырех модулей мощностью 115 Вт, двух аккумуляторов, инвертора мощностью 1 кВт и контроллера составит примерно 125000руб. Достаточно ли такого альтернативного источника энергии для дачи, зависит от энергозатрат, которые перед покупкой комплекса необходимо подсчитать. Если электричество в доме есть, то помогут показания счетчика за месяц; если оно не заведено, то следует установить все предметы, которые являются потребителями энергии, сложить их мощность и умножить на количество часов работы в месяц - это и будет количество энергозатрат. Разумеется, необходимо оптимизировать количество потребляемой энергии, например, за счет установки энергосберегающих лампочек, уличных фонариков, работающих от солнечной батареи, и т. д.

Соединения и ответвления проводов и кабелей необходимо выполнять в специально предназначенных для этого разветвительных и соединительных коробках (их можно различить по количеству отверстий: в первых их четыре, во вторых - два).

Надо признать, что альтернативные источники энергии еще не превратились в обыденность, поскольку первоначальные затраты на приобретение оборудования достаточно высоки, и окупятся они не ранее чем через 10 лет. Однако перспективы, которые открываются, как утверждают ученые, огромные.

Какие есть ещё альтернативные источники энергии

Ниже вы узнаете, какие есть ещё альтернативные источники энергии, способные заменить традиционные.

К альтернативным источникам энергии относят передвижные электростанции. Они мобильны, компактны, мощны, обладают значительным ресурсом, долговечны, работают с достаточно низким уровнем шума и при большом перепаде температур - от +45 до -50 °С.

Основными комплектующими передвижной электростанции являются генератор и двигатель внутреннего сгорания. Альтернативным источником энергии являются станции синхронные (для применения при аварийной ситуации) и асинхронные (для поддержания напряжения в сети и подключения электроприборов, реагирующих на скачки напряжения).

Передвижные станции могут работать на бензине или дизельном топливе. Первые используют в качестве источника электроснабжения при перебоях с подачей электричества. Их мощность колеблется в пределах от 0,5 до 12 кВт, чего вполне хватает для выполнения незначительных объемов работ. Генератор оснащен автозапуском, т. е. он начинает действовать при отключении электричества. Уровень шума бензиновых электростанций примерно на 20-30% ниже, чем дизельных.

Дизельная электростанция рассчитана на постоянную работу. Ее мощность варьируется в значительном пределе - от 12 до 2500 кВт. Станции могут давать разное количество оборотов в минуту - до 3000 об/мин. Для постоянного энергоснабжения дома и участка достаточно, если этот параметр будет составлять 1500 об/мин. Дизельные станции последнего поколения могут бесперебойно работать круглый год.

При покупке передвижной электростанции надо выбрать агрегат необходимой мощности. Для этого надо установить, какие именно приборы будут работать от нее. Среди постоянных потребителей энергии нужно назвать холодильник, лампы, среди периодически включаемых - утюг, электроинструмент и т. п. Чтобы рассчитать мощность станции, надо суммировать мощности тех приборов, которые активно эксплуатируются, и прибавить дополнительно 20 %. Если потребности небольшого садового домика обеспечит станция мощностью 2 кВт, то для индивидуального благоустроенного дома потребуется станция мощностью 10- 20 кВт.

Трудно себе представить современного человека, не знакомого с проблемой загрязнения земной атмосферы продуктами сжигания углеводородов. Ряд международных документов и прежде всего Киотское соглашение (1997г. – 1999г.) свидетельство тому, что международная общественность и администрации многих стран обеспокоены количеством выбросов парниковых газов в атмосферу и предлагают сдерживающие факторы. Таким фактором по сокращению сжигания первичных источников есть замена их на альтернативные виды энергии.

Аварии на атомных станциях: 1979 г. АЭС Три-Майл-Айленд, Пенсильвания, США; 1986 г. Чернобыльская АЭС, Украина; 2011 г. АЭС «Фукусима-1», Япония, выявили новую глобальную проблему для экологии и человека, и она так же решается за счет альтернативной энергетики. В качестве примера. Правительство Германии не будет использовать ядерную энергию в ближайшие 9 лет. Альтернативой становится ветровая энергия прибрежных Баренцево и Северного морей, солнечная энергии и энергия биомассы.

Из альтернативных и возобновляемых источников энергии, в настоящее время, наиболее востребованы, – жидкое биотопливо, твердое биотопливо, биогаз, солнечная и ветровая энергия.

Жидкое биотопливо.

Топливо из растительного или животного сырья и промышленных отходов. Биотопливо необходимо для двигателей внутреннего сгорания (этанол, метанол, биодизель и др.), то есть его можно использовать на дорожном транспорте. Основным производителем жидкого биотоплива являются США и Бразилия, по 45% всего объема производства в мире. Не будем описывать технологические процессы производства и особенности получения жидкого биотоплива, приведу лишь из располагаемой мною информации, их положительные и отрицательные характеристики.

Основными недостатками при развитии биотопливной индустрии эксперты считают:

– Сокращение посевных площадей под продовольственные культуры и перераспределение в пользу топливных, а значит сокращение кормовой базы для птицы и скота.
– В результате роста производства биотоплива число голодающих людей на планете может увеличиться более 1 млн. человек.

Главным достоинством при сжигании биотоплива считается экологический эффект. Использование биотоплива рассматривается как «углерод-нейтральная технология»: сначала атмосферный углерод (в виде СО2) связывается растениями, а потом выделяется при сжигании веществ, полученных из этих растений. Следует оговориться, что в сумме количество СО2, выделяющегося при изготовлении и использования такого биотоплива, почти такое же, как при использовании традиционного ископаемого топлива, но для определенного вида растений.

Следующим положительным фактором можно считать использование земель сельскохозяйственных угодий, выведенных из оборота. Выращивание на этих землях сырья для производства биотоплив позволит увеличить долю биотоплива на транспорте от 10% до 25%. В США и Европе существует стандарт на биотопливо — горючее Е85 (85 % этанола и 15 % бензина). В ряде Европейских стран уже сейчас смесь этилового спирта и бензина на 25 % дешевле чистого бензина. Правительства рядя стран, вводит налоговые льготы на продажу автомобилей, работающих на биотопливе.

1.Исходя из экологических и экономических преимуществ биотоплива, как вы думаете, имея личное транспортное средство, выгодно ли в нем использовать биотопливо?

Твердое биотопливо.


actwin,0,0,0,0;ScreenshotCaptor
12/22/2012 , 6:46:24 PM

Дрова, древнейшее топливо которым пользуется человек. В настоящее время выращиваются специальные энергетические леса, состоящие из быстрорастущих пород растений, которые в результате дальнейшей переработки используются как твердое биологическое топливо. Кроме дров, топливные гранулы и брикеты это прессованные изделия из древесных отходов опилок, щепы, коры, отходы лесозаготовок и др. Солома, отходы сельского хозяйства (лузги подсолнечника, ореховой скорлупы, навоза, куриного помета) и другой биомассы, все это твердое биотопливо.

На рынке много предложений по продаже, как твердотопливных котлов для отопления, так и топлива для них в виде древесных топливных гранул (пеллеты). В качестве примера подтверждающего выгодность использования твердого биотоплива приведу следующий интересный факт. Сейчас в Европе и в частности в Украине с 2010 года выращивается энергетическая Шведская верба. У вербы высокий прирост биомассы, растет как на заболоченных местах, так и на свежей пашне.

При сжигании низкая зольность. По теплоте сгорания щепа вербы уступает природному газу на 28%, зато в 2,5 – 4 раза дешевле. Котлы, использующие брикетированные отходы вербы работают в автоматическом режиме и достигают до 75% экономии, в сравнении с газовым отоплением. Номенклатура котлов от 21 кВт до 1000 кВт, и предназначены для частного дома, дачи, коттеджа и промышленных объектов.

2. Скажите, в эпоху роста цен на уголь, газ и электроэнергию, нужна ли нам альтернативная энергия в виде твердого биотоплива?

Биогаз получают метановым (анаэробным, то есть без доступа воздуха) брожением биомассы, которая разлагается в результате воздействия трех видов бактерий. Это гидролизные, кислотообразующие и метанобразующие бактерии, причем питанием каждому следующему виду бактерий служат продукты жизнедеятельности предыдущего. В результате брожения происходят сложные органические соединения и под воздействием бактерий преобразуются в метан СН4 и углекислый газ СО2. Сырьем для получения биогаза является органические отходы: навоз, птичий помет, зерновые и растительные отходы.

В сыром биогазе содержится в среднем 65% метана и 35% СО2, влаги и других примесей. Так же, как и природный газ, то есть газ, извлекаемый из недр, перед применением в двигателе внутреннего сгорания биогаз подвергается обогащению (до уровня содержания метана в газе 95%), очистке, осушке и сжатию.

Физико-химические и экологические свойства очищенного биогаза и природного газа практически идентичны, поэтому для них применяется одна и та же топливная аппаратура. Биогаз, в качестве топлива используется в отопительных котлах и в генераторах для получения механической и электрической энергии. Важным фактором биогазовой технологии по переработке навоза крупного рогатого скота, куриного помета, свиного навоза и других органических отходов сельского хозяйства, есть образование биоудобрений.

Биоудобрение содержит все необходимые компоненты удобрений (азот, фосфор, калий, макро- и микроэлементы) в растворенном, сбалансированном виде в соотношениях необходимых для растений, а также активные биологические стимуляторы роста, повышающие урожайность в два и более раз. Сегодня интенсивно внедряются биогазовые установки в аграрном секторе, как альтернативный источник топлива, и особенно на частном подворье.

Пример получения биогаза в домашних условиях (Липецкая обл. Россия).

Хозяин своего подворья вырыл большую яму. Выложил ее бетонными кольцами, затем накрыл железным колоколом. 1,5 т навоза смешать с 3,5 т отходов — сгнившая листва, ботва и т.п. Смесь заложить в яму. Добавил воду в таком количестве, чтобы получилось влажность примерно 60-70 процентов. Змеевиком, нагрел смесь до 35 градусов. Под действием температуры смесь начинала бродить и при отсутствии поступления воздуха температура поднималась до 70 градусов. Процесс производства занял 2 недели.

Он принял необходимые меры для предотвращения взрыва – установив противовес к куполу, с помощью тросов и периодически выпускал газ. В сутки получил около 40 кубических метров биогаза. Газ использовал для отопления дома. Пяти тонн смеси ему хватило для работы установки в течение полугода. Отходы, полученные в результате работы установки, — прекрасное удобрение для огорода.

3. Если у вас есть личное хозяйство, скот и птица или ваши родственники, или знакомые располагают частным подворьем, и район, где вы проживаете, нужно газифицировать, к какому решению вы придете по созданию системы отопления своего жилья?

Солнечная энергия.

Повсеместное использование солнечной энергию для бытовых нужд (освещение, обогрев домов, воды и т. д.) это давно состоявшийся факт для многих развитых государств. Стремительное развитие солнечной энергетики на базе новых технологий заставляют нас переосмысливать перспективу энергоснабжения нашего жилья. Энергия солнца – это экологически чисто, сравнительно недорого и главное, навсегда.

Подробности построения солнечных коллекторов своими руками, мы с вами рассматривали в статье http://сайт/page/solnechnaja-batareja-sdelaju-sam. Солнечная батарея, сделаю сам». Сегодня особенно радует тот факт, что солнечной энергией и ее использованием для нужд быта интересуются наши дети. Вот что пишет из России Башкирский школьник, который смастерил макет дома с солнечной батареей: «Использование электроэнергии от солнечных батарей выгодно не только из-за дешевизны, но и тем, что они не вредят окружающей среде.

Но Россия и в частности Башкирия имеет мало солнечных дней в году. Поэтому для большей пользы природе и экономики актуально использовать комбинированные источники энергии, то есть солнечную энергию, сегодня следует рассматривать как дополнение к топливным, гидравлическим и ядерным энергоресурсам. Моей мечтой является создание мегаполиса, получаемого питание только от солнечной энергии. Через космическую станцию, направляющую лучи солнца в определенную точку на Земле».

Будучи в гостях у друзей, они живут в Киеве в многоэтажном жилом доме новой постройки, я подметил один интересный факт. На уровне крыши 22-х этажного здания сделана площадка, огороженная барьером. На этой площадке в специальных горшках посажены зеленые декоративные деревца, наверно туя. Зачем это сделано я не знаю, и узнать мне не удалось.

Во время моего пребывания у друзей на 4 часа отключали электроэнергию (дом не газифицирован). Электроплита, электрочайник, горячая вода, отопление, телевизор, освещение, все отключено! Что делать, если это продолжительное время? У меня сразу возникла мысль, но почему рядом с зелеными насаждениями на крыше не установить солнечные батареи (площадь крыши 20 – 50 кв.м.) и в моменты отключения, электроснабжение жильцов осуществлять по аварийной схеме согласованной с мощностью солнечной батареи и накопителей.

4. Как, по вашему мнению, применимы ли предложенные мною решения по установке солнечных батарей на крышах современных зданий или нет?

Энергия ветра.

Использование энергии ветра происходит в ветрогенераторах с получением электрической энергии. Этот источник энергии коренным образом отличается от первичных источников энергии, так как отсутствует сырье, и нет отходов. Единственное важное требование для ветроагрегата – высокий среднегодовой уровень ветра.

Исходя из возможностей рынка, можно за вполне умеренные деньги приобрести ветряную установку и обеспечить на долгие годы энергонезависимость своему дому. Задача автономного или почти автономного электроснабжения жилья от энергии ветра все-таки сложна. Для выполнения такой задачи, пропеллер ветроагрегата должен быть диаметром порядка 20 м. Поэтому, использование ветрогенератора в домашнем хозяйстве должен рассматриваться в плане существенной экономии затрат на производство тепла и снижение потребления электроэнергии от сети.

И все-таки, чтобы окончательно сформировать мнение о возможности применения ветряных установок в быту, приведу некоторые цифры. По данным ЮНЕСКО для уверенного и комфортного жилья в загородном доме, расход электроэнергии должен быть не менее 2 кВт.ч. в сутки. По мнению специалистов, которые проводили мониторинг электропотребления нескольких десятков семей, реальное потребление электроэнергии семьи из трех человек составляет 3, 5 кВт.ч. в сутки (освещение, телевизор, компьютер, насос, холодильник).

Ветроустановки, серийно выпускаемые различными изготовителями мощностью 1000Вт – 2000 Вт при средней скорости ветра 5м/с способны вырабатывать от 8 кВт.ч. до 15 кВт.ч. в сутки. То есть, вполне могут обеспечить минимальное независимое электроснабжение загородного дома.

5.Как вы считаете, стоит ли заниматься установкой ветрогенератора, как независимого источника электроснабжения, своего дома, при нынешнем росте цен на электроэнергию?

Проблемы с экологией и все возрастающий темп роста цен на нефть, уголь и природный газ заставляют нас искать пути их решения. Альтернативные виды энергии, это реальность сегодняшнего дня. Почти все зависит от нашего понимания и от наших дальнейших действий. Я верю в позитивные результаты увеличения использования нетрадиционных и возобновляемых источников энергии, в том числе, и в быту, это доказано практикой.

Уважаемый читатель, я не случайно выбрал схему статьи в виде опроса. Очень надеюсь, что прочитав изложенные мною мысли, вы выскажете свое мнение в комментариях по одному из направлений или по всем. От вашего понимания, ответной реакции зависит дальнейшая тематика моих публикаций. Без вас мне такой информации не собрать. Желаю каждому и всем успехов в своих делах при полном здравии.

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.


Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.


Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.


«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу.

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.


Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.


Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа - во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.


Энергия из тепла человека

Принцип термоэлектрических генераторов , работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Т акой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.


Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.


Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства.

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.


Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод , загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала - не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.


«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало - его хватает лишь на питание небольших портативных гаджетов.

Где брать энергию? Не секрет, что люди рано или поздно исчерпают запасы нефти, газа, угля и даже урана, которые ещё остались на планете. Возникает вполне резонный вопрос: «Что же делать дальше? Где брать энергию?». Ведь вся наша жизнь базируется на использовании энергии. Получается, что после того как закончатся запасы углеводородов закончится и существование цивилизации?

Выход есть! Это так называемые альтернативные источники энергии. Кстати многие из них применяются, причем успешно, уже в настоящее время. Энергия ветра, приливов, солнца и геотермальные источники ─ успешно используется и преобразовывается людьми в электроэнергию. Но это так сказать .

В настоящее время, существуют сотни теорий и разработок по созданию и использованию необычных альтернативных источников энергии. Описанные в этой статье альтернативные источники энергии являются необычными только в том смысле, что они пока не стали популярными, массово не используются, непрактичны, убыточны и т.д.

Но это совсем не значит, что они не смогут эффективно применятся возможно уже в самом ближайшем будущем. Ведь та же нефть, как источник энергии была известна с древнейших времен, но только с конца времени промышленной революции, нефть смогли получить и обработать в пригодную для использования форму.

Неизвестно, что мы в будущем будем использовать для получения энергии, но традиционным источникам энергии наверняка есть альтернативы, и вполне возможно, хотя бы один из перечисленных ниже способов получения электрической энергии сможет стать распространенным и популярным.

Вот 5 необычных альтернативных источников энергии, которые вызывают реальную надежду на эффективное использование их в будущем:

Первая экспериментальная электростанция, получающая энергию из соленой воды создана компанией Statkraft в Норвегии. Электростанция для получения электроэнергии использует физический эффект - осмос. С помощью этого эффекта в результате смешивания солёной и пресной воды извлекается энергия из увеличивающейся энтропии жидкостей. затем эта энергия используется для вращения гидротурбины электрогенератора.

Разработаны демонстрационные электростанции на топливных элементах с твердооксидным электролитом мощностью до 500 кВт. Фактически в элементе происходит сжигание топлива и непосредственное превращение выделяющейся энергии в электричество. Это все равно что дизельный электрогенератор, только без дизеля и генератора. А также без дыма, шума, перегрева и с намного более высоким КПД.

Для получения электрической энергии используется термоэлектрический эффект. Это довольно старая технология, опять ставшая актуальной в наше время за счет массового использования энергосберегающих источников света и различных переносных электроприемников. Уже существуют и с успехом используются промышленные разработки, например отопительно-варочные печи, со встроенными термогенераторами, которые в процессе своей работы позволяют получать не только тепло, но и электроэнергию.

Созданы экспериментальные установки, которые позволяют получать электроэнергию за счет использования кинетической энергии - пешеходные дорожки, турникеты на железнодорожных вокзалах, специальный танцпол со встроенными в него пьезоэлектрическими генераторами. Есть идеи в ближайшем будущем создать специальные "зеленые тренажерные залы", в которых группа спортивных тренажерных велосипедов сможет, по словам производителей, генерировать до 3,6 мегаватт возобновляемой электроэнергии в год.

В данном источником энергии является специальный наногенератор, преобразующий в электрическую энергию микроколебания в человеческом теле. Устройству довольно малейших вибраций, чтобы вырабатывать электический ток, позволяющий поддерживать работоспособность мобильных устройств. Современные наногенераторы превращают любые движения и перемещения в источник энергии. Очень перспективны и интересны варианты совместного использования наногенераторов и солнечных батарей.

А что вы думаете по этому поводу? Может быть вам известны другие новые альтернативные источники электроэнергии. Поделитесь в комментариях!

Альтернативная энергетика - совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии.

Альтернативный источник энергии - способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле.

Виды альтернативной энергетики : солнечная энергетика, ветроэнергетика, биомассовая энергетика, волновая энергетика, градиент-температурная энергетика, эффект запоминания формы, приливная энергетика, геотермальная энергия.

Солнечная энергетика - преобразование солнечной энергии в электроэнергию фотоэлектрическим и термодинамическим методами. Для фотоэлектрического метода используются фотоэлектрические преобразователи (ФЭП) с непосредственным преобразованием энергии световых квантов (фотонов) в электроэнергию.

Термодинамические установки, преобразующие энергию солнца вначале в тепло, а затем в механическую и далее в электрическую энергию, содержат "солнечный котел", турбину и генератор. Однако солнечное излучение, падающее на Землю, обладает рядом характерных особенностей : низкой плотностью потока энергии, суточной и сезонной цикличностью, зависимостью от погодных условий. Поэтому изменения тепловых режимов могут вносить серьезные ограничения в работу системы. Подобная система должна иметь аккумулирующее устройство для исключения случайных колебаний режимов эксплуатации или обеспечения необходимого изменения производства энергии во времени. При проектировании солнечных энергетических станций необходимо правильно оценивать метеорологические факторы.

Геотермальная энергетика - способ получения электроэнергии путем преобразования внутреннего тепла Земли (энергии горячих пароводяных источников) в электрическую энергию.

Этот способ получения электроэнергии основан на факте, что температура пород с глубиной растет, и на уровне 2-3 км от поверхности Земли превышает 100°С. Существует несколько схем получения электроэнергии на геотермальной электростанции.

Прямая схема: природный пар направляется по трубам в турбины, соединенные с электрогенераторами. Непрямая схема: пар предварительно (до того как попадает в турбины) очищают от газов, вызывающих разрушение труб. Смешанная схема: неочищенный пар поступает в турбины, а затем из воды, образовавшийся в результате конденсации, удаляют не растворившиеся в ней газы.

Стоимость "топлива" такой электростанции определяется затратами на продуктивные скважины и систему сбора пара и является относительно невысокой. Стоимость самой электростанции при этом невелика, так как она не имеет топки, котельной установки и дымовой трубы.

К недостаткам геотермальных электроустановок относится возможность локального оседания грунтов и пробуждения сейсмической активности. А выходящие из-под земли газы могут содержать отравляющие вещества. Кроме того, для постройки геотермальной электростанции необходимы определенные геологические условия.

Ветроэнергетика - это отрасль энергетики, специализирующаяся на использовании энергии ветра (кинетической энергии воздушных масс в атмосфере).

Ветряная электростанция - установка, преобразующая кинетическую энергию ветра в электрическую энергию. Состоит она из ветродвигателя, генератора электрического тока, автоматического устройства управления работой ветродвигателя и генератора, сооружений для их установки и обслуживания.

Для получения энергии ветра применяют разные конструкции: многолопастные «ромашки»; винты вроде самолетных пропеллеров; вертикальные роторы и др.

Производство ветряных электростанций очень дешево, но их мощность мала, и их работа зависит от погоды. К тому же они очень шумны, поэтому крупные ветряные электростанции даже приходится на ночь отключать. Помимо этого, ветряные электростанции создают помехи для воздушного сообщения, и даже для радиоволн. Применение ветряных электростанций вызывает локальное ослабление силы воздушных потоков, мешающее проветриванию промышленных районов и даже влияющее на климат. Наконец, для использования ветряных электростанций необходимы огромные площади, много больше, чем для других типов электрогенераторов.

Волновая энергетика - способ получения электрической энергии путем преобразования потенциальной энергии волн в кинетическую энергию пульсаций и оформлении пульсаций в однонаправленное усилие, вращающее вал электрогенератора.

По сравнению с ветровой и солнечной энергией энергия волн обладает гораздо большей удельной мощностью . Так, средняя мощность волнения морей и океанов, как правило, превышает 15 кВт/м. При высоте волн в 2 м мощность достигает 80 кВт/м. То есть, при освоении поверхности океанов не может быть нехватки энергии. В механическую и электрическую энергию можно использовать только часть мощности волнения, но для воды коэффициент преобразования выше, чем для воздуха - до 85 процентов.

Приливная энергетика, как и прочие виды альтернативной энергетики, является возобновляемым источником энергии.

Для выработки электроэнергии электростанции такого типа используют энергию прилива. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн - перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены гидротурбины, которые вращают генератор.

Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и, когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит.

Считается экономически целесообразным строительство приливных электростанций в районах с приливными колебаниями уровня моря не менее 4 м. Проектная мощность приливной электростанции зависит от характера прилива в районе строительства станции, от объема и площади приливного бассейна, от числа турбин, установленных в теле плотины.

Недостаток приливных электростанции в том, что они строятся только на берегу морей и океанов, к тому же они развивают не очень большую мощность, да и приливы бывают всего лишь два раза в сутки. И даже они экологически не безопасны. Они нарушают нормальный обмен соленой и пресной воды и тем самым - условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения.

Градиент-температурная энергетика . Этот способ добычи энергии основан на разности температур. Он не слишком широко распространен. С его помощью можно вырабатывать достаточно большое количество энергии при умеренной себестоимости производства электроэнергии.

Большинство градиент-температурных электростанций расположено на морском побережье и используют для работы морскую воду. Мировой океан поглощает почти 70% солнечной энергии, падающей на Землю. Перепад температур между холодными водами на глубине в несколько сотен метров и теплыми водами на поверхности океана представляет собой огромный источник энергии, оцениваемый в 20-40 тысяч ТВт, из которых практически может быть использовано лишь 4 ТВт.

Вместе с тем, морские теплостанции, построенные на перепаде температур морской воды, способствуют выделению большого количества углекислоты, нагреву и снижению давления глубинных вод и остыванию поверхностных. А процессы эти не могут не сказаться на климате, флоре и фауне региона.

Биомассовая энергетика . При гниении биомассы (навоз, умершие организмы, растения) выделяется биогаз с высоким содержанием метана, который и используется для обогрева, выработки электроэнергии и пр.

Существуют предприятия (свинарники и коровники и др.), которые сами обеспечивают себя электроэнергией и теплом за счет того, что имеют несколько больших "чанов", куда сбрасывают большие массы навоза от животных. В этих герметичных баках навоз гниет, а выделившийся газ идет на нужды фермы.

Еще одним преимуществом этого вида энергетики является то, что в результате использования влажного навоза для получения энергии, от навоза остается сухой остаток являющийся прекрасным удобрением для полей.

Также в качестве биотоплива могут быть использованы быстрорастущие водоросли и некоторые виды органических отходов (стебли кукурузы, тростника и пр.).

Эффект запоминания формы - физическое явление, впервые обнаруженное советскими учеными Курдюмовым и Хондросом в 1949 году.

Эффект запоминания формы наблюдается в особых сплавах и заключается в том, что детали из них восстанавливают после деформации свою начальную форму при тепловом воздействии. При восстановлении первоначальной формы может совершаться работа, значительно превосходящая ту, которая была затрачена на деформацию в холодном состоянии. Таким образом, при восстановлении первоначальной формы сплавы вырабатывают значительно количество тепла (энергии).

Основным недостатком эффекта восстановления формы является низкий КПД - всего 5-6 процентов.

Материал подготовлен на основе информации открытых источников