Плацентарный барьер. Плацента, типы плацент, плацентарный барьер Чем опасно изменение размеров плаценты

Племенное разведение собак Сотская Мария Николаевна

Плацентарный барьер

Плацентарный барьер

Между организмом матери и плодом существует так называемый плацентарный барьер. Его функции направлены на защиту внутренней среды плода от проникновения веществ, циркулирующих в крови матери, не имеющих для плода энергетического и пластического значения и, возможной иммунологической агрессии материнского организма, а также на защиту внутренней среды матери от проникновения веществ, нарушающих ее гомеостаз, из крови плода.

Плацентарный барьер состоит из эпителия трофобласта, синцития, покрывающего ворсинки хориона плаценты, соединительной ткани ворсинок и эндотелия их капилляров. В терминальных ворсинках многочисленные капилляры расположены сразу под синцитием и плацентарным барьером, при этом состоят из двух одноклеточных мембран. Установлено, что в кровь плода из организма матери в основном могут поступать вещества, имеющие низкий молекулярный вес. Имеются данные о прохождении через плацентарный барьер высокомолекулярных веществ, антигенов, бактерий, вирусов, гельминтов. Проникновение высокомолекулярных веществ, антигенов, бактерий наблюдается при патологии беременности, когда функция плацентарного барьера нарушается.

При патологии беременности многие лекарственные вещества, а также продукты нарушенного метаболизма проникают в кровь плода и оказывают на него повреждающее действие.

С самого начала беременности и вплоть до ее окончания формируется и функционирует система мать-плацента-плод . Важнейшим компонентом этой системы является плацента , которая представляет собой комплексный орган, в формировании которого принимают участие производные трофобласта и эмбриобласта , а также децидуальная ткань . Функция плаценты, в первую очередь, направлена на обеспечение достаточных условий для физиологического течения беременности и нормального развития плода. К этим функциям относятся: дыхательная, питательная, выделительная, защитная, эндокринная. Все метаболические, гормональные, иммунные процессы во время беременности обеспечиваются через сосудистую систему матери и плода . Несмотря на то, что кровь матери и плода не смешивается, так как их разделяет плацентарный барьер , все необходимые питательные вещества и кислород плод получает из крови матери. Основным структурным компонентом плаценты является ворсинчатое дерево .

При нормальном развитии беременности имеется зависимость между ростом плода, его массой тела и размерами, толщиной, массой плаценты. До 16 недель беременности развитие плаценты опережает темпы роста плода. В случае смерти эмбриона (плода) происходит торможение роста и развития ворсин хориона и прогрессирование инволюционно-дистрофических процессов в плаценте. Достигнув необходимой зрелости в 38-40 недель беременности, в плаценте прекращаются процессы образования новых сосудов и ворсин.

1 - артерии пуповины
2 - стволовая ворсина
3 - децидуальная перегородка
4 - децидуальный слой
5 - миометрий
6 - вены
7 - спиральные артерии
8 - хорион
9 - амнион
10 - межворсинчатое пространство
11 - вена пуповины
12 - котиледон

Зрелая плацента представляет собой дискообразную структуру диаметром 15-20 см и толщиной 2,5 - 3,5 см. Ее масса достигает 500-600 гр. Материнская поверхность плаценты , которая обращена в сторону стенки матки, имеет шероховатую поверхность, образованную структурами базальной части децидуальной оболочки. Плодовая поверхность плаценты , которая обращена в сторону плода, покрыта амниотической оболочкой . Под ней видны сосуды, которые идут от места прикрепления пуповины к краю плаценты. Строение плодовой части плаценты представлено многочисленными ворсинами хориона , которые объединяются в структурные образования - котиледоны. Каждый котиледон образован стволовой ворсиной с разветвлениями, содержащими сосуды плода. Центральная часть котиледона образует полость, которая окружена множеством ворсин. В зрелой плаценте насчитывается от 30 до 50 котиледонов. Котиледон плаценты условно сравним с деревом, в котором опорная ворсина I порядка является его стволом, ворсины II и III порядка - крупными и мелкими ветвями, промежуточные ворсины - маленькими ветками, а терминальные ворсины - листьями. Котиледоны отделены друг от друга перегородками (септами), исходящими из базальной пластины.

Межворсинчатое пространство с плодовой стороны образовано хориальной пластиной и прикрепленными к ней ворсинами, а с материнской стороны оно ограничено базальной пластиной, децидуальной оболочкой и отходящими от неё перегородками (септами). Большинство ворсин плаценты свободно погружены в межворсинчатое пространство и омываются материнской кровью . Различают также и якорные ворсины, которые фиксируются к базальной децидуальной оболочке и обеспечивают прикрепление плаценты к стенке матки.

1 - верхняя полая вена
2 - овальное отверстие
3 - нижняя полая вена
4 - венозный проток
5 - портальный синус
6 -
7 - вена пуповины
8 - артерии пуповины
9 - плацента
10 - надчревные артерии
11 - артериальный проток

Спиральные артерии , которые являются конечными ветвями маточной и яичниковой артерий, питающих беременную матку , открываются в межворсинчатое пространство 120-150 устьями, обеспечивая постоянный приток материнской крови, богатой кислородом, в межворсинчатое пространство. За счет разницы давления , которое выше в материнском артериальном русле по сравнению с межворсинчатым пространством, кровь, насыщенная кислородом , из устьев спиральных артерий направляется через центр котиледона к ворсинам, омывает их, достигает хориальной пластины и по разделительным септам возвращается в материнский кровоток через венозные устья. При этом кровоток матери и плода отделены друг от друга. Т.е. кровь матери и плода не смешивается между собой.

Переход газов крови, питательных веществ , продуктов метаболизма и других субстанций из материнской крови в плодовую и обратно осуществляется в момент контакта ворсин с кровью матери через плацентарный барьер . Он образован наружным эпителиальным слоем ворсины, стромой ворсины и стенкой кровеносного капилляра, расположенного внутри каждой ворсины. По этому капилляру течет кровь плода. Насыщаясь таким образом кислородом, кровь плода из капилляров ворсин собирается в более крупные сосуды, которые в конечном итоге объединяются в вену пуповины , по которой насыщенная кислородом кровь оттекает к плоду . Отдав кислород и питательные вещества в организме плода, кровь, обедненная кислородом и богатая углекислым газом, оттекает от плода по двум артериям пуповины к плаценте , где эти сосуды делятся радиально в соответствии с количеством котиледонов. В результате дальнейшего ветвления сосудов внутри котиледонов кровь плода вновь попадает в капилляры ворсин и вновь насыщается кислородом, и цикл повторяется. За счет перехода через плацентарный барьер газов крови и питательных веществ реализуется дыхательная, питательная и выделительная функция плаценты. При этом в кровоток плода попадает кислород и выводится углекислый газ и другие продукты метаболизма плода . Одновременно в сторону плода осуществляется транспорт белков, липидов, углеводов, микроэлементов, витаминов, ферментов и многого другого.

1 - эндотелий капилляров терминальных ворсин
2 - капилляр ворсины
3 - строма ворсины
4 - эпителиальный покров ворсин

Плацента осуществляет важную защитную (барьерную функцию) посредством плацентарного барьера, который обладает избирательной проницаемостью в двух направлениях. При нормальном течении беременности проницаемость плацентарного барьера увеличивается до 32 -34 недель беременности, после чего определенным образом снижается. Однако, к сожалению, через плацентарный барьер сравнительно легко проникают в плодовый кровоток достаточно большое количество лекарственных препаратов, никотин, алкоголь, наркотические вещества, пестициды, другие токсические химические вещества, а также целый ряд возбудителей инфекционных заболеваний, что оказывает неблагоприятное воздействие на плод. Кроме того, под воздействием патогенных факторов барьерная функция плаценты нарушается еще в большей степени.

Плацента анатомически и функционально связана с амнионом (водная оболочка) , который окружает плод. Амнион представляет собой тонкую мембрану , которая выстилает поверхность плаценты, обращенной к плоду, переходит на пуповину и сливается с кожей плода в области пупочного кольца. Амнион активно участвует в обмене околоплодных вод , в ряде обменных процессов, а также выполняет и защитную функцию.

Плаценту и плод соединяет пуповина , которая представляет собой шнуровидное образование. Пуповина содержит две артерии и одну вену . По двум артериям пуповины течет обедненная кислородом кровь от плода к плаценте. По вене пуповины к плоду течет кровь, обогащенная кислородом. Сосуды пуповины окружены студенистым веществом, которое получило название "вартонов студень" . Эта субстанция обеспечивает упругость пуповины, защищает сосуды и обеспечивает питание сосудистой стенки. Пуповина может прикрепляться (чаще всего) в центре плаценты и реже сбоку пуповины или к оболочкам. Длина пуповины при доношенной беременности в среднем составляет около 50 см.

Плацента, плодные оболочки и пуповина вместе образуют послед , который изгоняется из матки после рождения ребенка.

С самого начала беременности и вплоть до ее окончания формируется и функционирует система мать-плацента-плод . Важнейшим компонентом этой системы является плацента , которая представляет собой комплексный орган, в формировании которого принимают участие производные трофобласта и эмбриобласта , а также децидуальная ткань . Функция плаценты, в первую очередь, направлена на обеспечение достаточных условий для физиологического течения беременности и нормального развития плода. К этим функциям относятся: дыхательная, питательная, выделительная, защитная, эндокринная. Все метаболические, гормональные, иммунные процессы во время беременности обеспечиваются через сосудистую систему матери и плода . Несмотря на то, что кровь матери и плода не смешивается, так как их разделяет плацентарный барьер , все необходимые питательные вещества и кислород плод получает из крови матери. Основным структурным компонентом плаценты является ворсинчатое дерево .

При нормальном развитии беременности имеется зависимость между ростом плода, его массой тела и размерами, толщиной, массой плаценты. До 16 недель беременности развитие плаценты опережает темпы роста плода. В случае смерти эмбриона (плода) происходит торможение роста и развития ворсин хориона и прогрессирование инволюционно-дистрофических процессов в плаценте. Достигнув необходимой зрелости в 38-40 недель беременности, в плаценте прекращаются процессы образования новых сосудов и ворсин.

Зрелая плацента представляет собой дискообразную структуру диаметром 15-20 см и толщиной 2,5 - 3,5 см. Ее масса достигает 500-600 гр. Материнская поверхность плаценты , которая обращена в сторону стенки матки, имеет шероховатую поверхность, образованную структурами базальной части децидуальной оболочки. Плодовая поверхность плаценты , которая обращена в сторону плода, покрыта амниотической оболочкой . Под ней видны сосуды, которые идут от места прикрепления пуповины к краю плаценты. Строение плодовой части плаценты представлено многочисленными ворсинами хориона , которые объединяются в структурные образования - котиледоны. Каждый котиледон образован стволовой ворсиной с разветвлениями, содержащими сосуды плода. Центральная часть котиледона образует полость, которая окружена множеством ворсин. В зрелой плаценте насчитывается от 30 до 50 котиледонов. Котиледон плаценты условно сравним с деревом, в котором опорная ворсина I порядка является его стволом, ворсины II и III порядка - крупными и мелкими ветвями, промежуточные ворсины - маленькими ветками, а терминальные ворсины - листьями. Котиледоны отделены друг от друга перегородками (септами), исходящими из базальной пластины.

Межворсинчатое пространство с плодовой стороны образовано хориальной пластиной и прикрепленными к ней ворсинами, а с материнской стороны оно ограничено базальной пластиной, децидуальной оболочкой и отходящими от неё перегородками (септами). Большинство ворсин плаценты свободно погружены в межворсинчатое пространство и омываются материнской кровью . Различают также и якорные ворсины, которые фиксируются к базальной децидуальной оболочке и обеспечивают прикрепление плаценты к стенке матки.

Спиральные артерии , которые являются конечными ветвями маточной и яичниковой артерий, питающих беременную матку , открываются в межворсинчатое пространство 120-150 устьями, обеспечивая постоянный приток материнской крови, богатой кислородом, в межворсинчатое пространство. За счет разницы давления , которое выше в материнском артериальном русле по сравнению с межворсинчатым пространством, кровь, насыщенная кислородом , из устьев спиральных артерий направляется через центр котиледона к ворсинам, омывает их, достигает хориальной пластины и по разделительным септам возвращается в материнский кровоток через венозные устья. При этом кровоток матери и плода отделены друг от друга. Т.е. кровь матери и плода не смешивается между собой.

Переход газов крови, питательных веществ , продуктов метаболизма и других субстанций из материнской крови в плодовую и обратно осуществляется в момент контакта ворсин с кровью матери через плацентарный барьер . Он образован наружным эпителиальным слоем ворсины, стромой ворсины и стенкой кровеносного капилляра, расположенного внутри каждой ворсины. По этому капилляру течет кровь плода. Насыщаясь таким образом кислородом, кровь плода из капилляров ворсин собирается в более крупные сосуды, которые в конечном итоге объединяются в вену пуповины , по которой насыщенная кислородом кровь оттекает к плоду . Отдав кислород и питательные вещества в организме плода, кровь, обедненная кислородом и богатая углекислым газом, оттекает от плода по двум артериям пуповины к плаценте , где эти сосуды делятся радиально в соответствии с количеством котиледонов. В результате дальнейшего ветвления сосудов внутри котиледонов кровь плода вновь попадает в капилляры ворсин и вновь насыщается кислородом, и цикл повторяется. За счет перехода через плацентарный барьер газов крови и питательных веществ реализуется дыхательная, питательная и выделительная функция плаценты. При этом в кровоток плода попадает кислород и выводится углекислый газ и другие продукты метаболизма плода . Одновременно в сторону плода осуществляется транспорт белков, липидов, углеводов, микроэлементов, витаминов, ферментов и многого другого.

Плацента осуществляет важную защитную (барьерную функцию) посредством плацентарного барьера, который обладает избирательной проницаемостью в двух направлениях. При нормальном течении беременности проницаемость плацентарного барьера увеличивается до 32 -34 недель беременности, после чего определенным образом снижается. Однако, к сожалению, через плацентарный барьер сравнительно легко проникают в плодовый кровоток достаточно большое количество лекарственных препаратов, никотин, алкоголь, наркотические вещества, пестициды, другие токсические химические вещества, а также целый ряд возбудителей инфекционных заболеваний, что оказывает неблагоприятное воздействие на плод. Кроме того, под воздействием патогенных факторов барьерная функция плаценты нарушается еще в большей степени.

Плацента анатомически и функционально связана с амнионом (водная оболочка) , который окружает плод. Амнион представляет собой тонкую мембрану , которая выстилает поверхность плаценты, обращенной к плоду, переходит на пуповину и сливается с кожей плода в области пупочного кольца. Амнион активно участвует в обмене околоплодных вод , в ряде обменных процессов, а также выполняет и защитную функцию.

Плаценту и плод соединяет пуповина , которая представляет собой шнуровидное образование. Пуповина содержит две артерии и одну вену . По двум артериям пуповины течет обедненная кислородом кровь от плода к плаценте. По вене пуповины к плоду течет кровь, обогащенная кислородом. Сосуды пуповины окружены студенистым веществом, которое получило название «вартонов студень» . Эта субстанция обеспечивает упругость пуповины, защищает сосуды и обеспечивает питание сосудистой стенки. Пуповина может прикрепляться (чаще всего) в центре плаценты и реже сбоку пуповины или к оболочкам. Длина пуповины при доношенной беременности в среднем составляет около 50 см.

Плацента, плодные оболочки и пуповина вместе образуют послед , который изгоняется из матки после рождения ребенка.

Плацента – это комплекс тканевых образований, развивающихся из сосудистой оболочки плода и слизистой оболочки матки матери и служит для связи плода с материнским организмом.
Плацента делится на две части:
– плодная (сосудистая оболочка плода)
– материнская (слизистая оболочка матки)
Плод окружен тремя оболочками:
–– внутренняя (водная – amnion) образуется из трофобласта, окружает плод со всех сторон, прозрачная и не имеет сосудов, образует водный пузырь вокруг плода и содержит околоплодную жидкость. У коровы к концу беременности бывает 3-5 л, у кобылы – 3-7 л, овец – 0,04-0,15. В амниотической жидкости содержится: белок, сахар, жиры, мочевина, муцин, соли Са, Р, Na.
Функции амниотической жидкости:
– служит буфером, защищающим плод от механических воздействий извне;
– регулирует внутриматочное давление, способствует нормальному кровообращению в сосудах плаценты и пуповины;
– участвует в поддержке водного баланса (плод поглощает часть околоплодной жидкости);
– создает условия для пропорционального формирования частей и органов плода.
–– средняя (мочевая – allantois) оболочка образуется из первичного мочевого пузыря зародыша. Тонкая, прозрачная, имеет сосуды. От верхушки мочевого пузыря зародыша, продукты обмена через пупочное кольцо через мочевой проток (урахус) попадают в мочевую оболочку. К концу беременности у коров – 8-15 л; кобыл – 4-10 л; овец/коз – 0,5-1,5 л. В аллантоисной жидкости находят мочевину, виноградный сахар и соли, гормоны. Благодаря гормонам, ферментам и питуитриноподобным веществам мочевую жидкость применяют для ускорения сокращения (инволюции) матки после родов. Большая роль мочевой оболочки принадлежит в период развития кровообращения у плода.
–– сосудистая (хорион – наружняя оболочка – chorion) – окружает плод со всех сторон и соприкасается со слизистой оболочкой матки. Сосудистая оболочка покрыта ворсинками.
Ворсинка состоит из соеденительнотканной основы, покрытой слоем эпителия и кровеносных сосудов (артерии и вены). Ворсинки хориона составляют плодную часть плаценты. Через сосуды пупочной вены хориона питательные вещества и кислород от матери переходят к плоду, а через пупочные артерии продукты обмена и углекислота из крови плода поступают в кровь матери.
Внешний листок аллантоиса срастается с хорионом, образуя алланто-хорион, а внутренний с амнионом (аллантоамнион). Благодаря этому зародыш располагается в двух наполненных жидкостью мешках. В дальнейшем алланто-хорион постепенно срастается с окружающей его слизистой оболочкой матки (имплантация). У коров имплантация происходит в течение 1-1,5 месяцев беременности, а у свиноматок уже через 3-4 недели.
Таким образом, комплекс оболочек плода в совокупности со слизистой оболочкой матки образуют плаценту, которая осуществляет обмен веществ между матерью и плодом.
Функции плаценты: питание плода, дыхание, защитную, выделительную, гормональную (гонадотропины, простагландины, эстрогены, прогестерон).
По характеру питания плацента делится:
– эмбриотрофная – маточная часть плаценты продуцирует секрет – эмбриотроф (маточное молочко), всасываемый ворсинками плодной части (однокопытные, жвачные, свиньи).
– гистеротрофная – плодная часть плаценты всасывает питательные вещества, образующиеся в результате разжижения и растворения тканей ферментами хориона (приматы, кролики, плотоядные).
По характеру связей частей плаценты их разделяют на следующие типы:
1. ахориальная (безворсинчатая) – кенгуру, кит
2. эпителиохориальная – кобыла, свинья
3. десмохориальная – корова, коза, овца
4. эндотелиохориальная – мясоедные
5. гемохориальная – обезьяна, крольчиха
По расположению ворсин хориона подразделяются:
1. рассеянная – кобыла, свинья
2. множественная – жвачные
3. зональная – плотоядные
4. дисковидная – приматы, грызуны
Плацента может быть:
– неотпадающая – у всех сельскохозяйственных животных;
– отпадающая – у приматов (в процессе имплантации зародыша плацента слизистой оболочки разрушается под воздействием ферментов, и ворсинки плодной плаценты погружаются в лакуны, в которых циркулирует материнская кровь).
Ворсинки сгруппированы на хорионе в виде островков – котиледонов. Они сгруппированы только в тех местах сосудистой оболочки, которые прилегают к особым образованиям слизистой оболочки матки – карункулам. У коров карункулов 80-120 шт; у овец – 88-100; коз – 90-120. В карункулах имеются углубления – крипты, в которые врастают ворсинки котиледонов.
Плацентарный обмен
Плацента обладает избирательной проницаемостью для различных веществ, содержащихся в материнской крови. В результате одни вещества проходят в неизменном виде, другие претерпевают биохимические изменения, третьи задерживаются в плаценте.
Плацента проницаема для низкомолекулярных веществ (моносахариды, водорастворимые витамины, некоторые белки). Витамин «А» всасывается в плаценту в виде его предшественника – каротина.
Под действием ферментов расщепляются в плаценте:
белки – до аминокислот;
жиры – до жирных кислот и глицерина;
гликоген – до моносахаров.
Клеточные слои плаценты защищают плод от бактерий, соматических клеток, некоторых лекарственных препаратов. Плацента способна задерживать и обеззараживать токсические метаболиты, синтезировать ряд веществ, выполняющих защитные функции. С другой стороны, плацента препятствует поступлению вредных веществ обратном порядке – от плода к матери.
При патологиях плаценты (котиледонит, плацентит) нарушаются ее барьерные функции и делают ее проницаемой для высокомолекулярных химических соединений, бактерий, грибов, бруцелл, лептоспир, кампилобактерий, токсинов (Д.Д Сосинов., Е.П. Кремлев).

Плацента связывает плод с организмом матери и состоит из плодной (ворсинчатый хорион) и материнской (децидуальная оболочка) частей (рис. 20–4 и 20–5). В плаценте ворсины хориона, содержащие кровеносные капилляры плода, омываются кровью беременной, циркулирующей в межворсинчатом пространстве. Кровь плода и кровь беременной разделены плацентарным барьером - трофобластом, стромой ворсин и эндотелием капилляров плода. Перенос веществ через плацентарный барьер осуществляется за счёт пассивной диффузии (кислород, углекислый газ, электролиты, моносахариды), активного транспорта (железо, витамин С) или опосредованной переносчиками облегчённой диффузии (глюкоза, Ig).

Рис . 20–5 . Децидуальная оболочка матки и плацента . Полость матки выстилает пристеночная часть децидуальной оболочки. Децидуальная оболочка, обращённая к ворсинчатому хориону, входит в состав плаценты.

Кровоток в плаценте

Пуповина , или пупочный канатик (рис. 20–3, 20–4) - шнуровидное образование, содержащее две пуповинные артерии и одну пуповинную вену, несущие кровь от плода к плаценте и обратно. По пуповинным артериям течёт венозная кровь от плода к ворсинкам хориона в составе плаценты. По вене к плоду притекает артериальная кровь, обогащённая кислородом в кровеносных капиллярах ворсинок. Общий объёмный кровоток через пуповину составляет 125 мл/кг/мин (500 мл/мин).

Артериальная кровь беременной впрыскивается непосредственно в межворсинчатое пространство (лакуны, см. рис. 20–3 и 20–4) под давлением и толчками из примерно сотни расположенных перпендикулярно по отношению к плаценте спиральных артерий. Лакуны полностью сформированной плаценты содержат около 150 мл омывающей ворсинки материнской крови, полностью замещаемой 3–4 раза в минуту. Из межворсинчатого пространства венозная кровь оттекает через расположенные параллельно плаценте венозные сосуды.

Плацентарный барьер . В состав плацентарного барьера (материнская кровь  кровь плода) входят: синцитиотрофобласт  цитотрофобласт  базальная мембрана трофобласта  соединительная ткань ворсинки  базальная мембрана в стенке капилляров ворсинки  эндотелий капилляров ворсинки. Именно через эти структуры происходит обмен между кровью беременной и кровью плода. Именно эти структуры реализуют защитную (в том числе иммунную) функцию плода.

Функции плаценты

Плацента выполняет множество функций, включая транспорт питательных веществ и кислорода от беременной к плоду, удаление продуктов жизнедеятельности плода, синтез белков и гормонов, иммунологическую защиту плода.

Транспортная функция

Перенос кислорода и диоксида углерода происходит путём пассивной диффузии.

O 2 . Парциальное давление кислорода (Po 2) артериальной крови спиральных артериол при pH 7,4 равно 100 мм рт.ст при насыщении Hb кислородом 97,5%. В то же время Po 2 крови в венозной части капилляров плода составляет 23 мм рт.ст. при насыщении Hb кислородом 60%. Хотя Po 2 материнской крови в результате диффузии кислорода быстро уменьшается до 30–35 мм рт.ст., даже этой разницы в 10 мм рт.ст. достаточно для адекватного снабжения кислородом организма плода. Эффективной диффузии кислорода от матери к плоду способствуют дополнительные факторы.

 Hb плода имеет большее сродство к кислороду, чем дефинитивного Hb беременной (кривая диссоциации HbF сдвинута влево). При одинаковых Po 2 Hb плода связывает на 20–50% больше кислорода, чем Hb матери.

 Концентрация Hb в крови плода выше (это увеличивает кислородную ёмкость), чем в крови матери. Таким образом, несмотря на то, что насыщение кислородом крови плода редко превышает 80%, гипоксии тканей плода не возникает.

 pH крови плода ниже pH цельной крови взрослого человека. При увеличении концентрации ионов водорода сродство кислорода к Hb уменьшается (эффект Бор а), поэтому кислород легче переходит из крови матери в ткани плода.

CO 2 диффундирует через структуры плацентарного барьера по направлению концентрационного градиента (примерно 5 мм рт.ст.) между кровью пуповинных артерий (48 мм рт.ст.) и кровью лакун (43 мм рт.ст.). Кроме того, Hb плода имеет меньшее сродство к CO 2 , чем дефинитивный Hb матери.

Мочевина , креатинин , стероидные гормоны , жирные кислоты , билирубин . Их перенос происходит путём простой диффузии, но плацента слабо проницаема для образующихся в печени глюкуронидов билирубина.

Глюкоза - облегчённая диффузия.

Аминокислоты и витамины - активный транспорт.

Белки (например, трансферрин, гормоны, некоторые классы Ig), пептиды , липопротеины - опосредованный рецепторами эндоцитоз.

Электролиты - Na + , K + , Cl – , Ca 2+ , фосфат - пересекают барьер путём диффузии и с помощью активного транспорта.

Иммунологическая защита

 Транспортируемые через плацентарный барьер материнские АТ класса IgG обеспечивают пассивный иммунитет плода.

 Организм беременной не отторгает иммунологически чужеродный плод из-за локального угнетения реакций клеточного иммунитета женщины и отсутствия гликопротеинов главного комплекса гистосовместимости (HLA) в клетках хориона.

 Хорион синтезирует вещества, угнетающие клеточный иммунный ответ (экстракт из синцитиотрофобласта тормозит in vitro размножение клеток иммунной системы беременной).

 В клетках трофобласта не экспрессируются Аг HLA, что обеспечивает защиту фетоплацентарного комплекса от распознавания иммунокомпетентными клетками беременной. Именно поэтому отщеплённые от плаценты участки трофобласта, попадая в лёгкие женщины, не отторгаются. В то же время другие типы клеток в ворсинках плаценты несут на своей поверхности Аг HLA. Трофобласт не содержит также эритроцитарных Аг систем AB0 и Rh.

Детоксикация некоторых ЛС.

Эндокринная функция . Плацента - эндокринный орган. Плацента синтезирует множество гормонов и других биологически активных веществ, имеющих важное значение для нормального течения беременности и развития плода (ХГТ, прогестерон, хорионический соматомаммотропин, фактор роста фибробластов, трансферрин, пролактин, релаксины, кортиколиберин, эстрогены и другие; см. рис. 20–6, а также рис. 20–12 в книге, см. также табл. 18–10).

Хорионический гонадотропин (ХГТ) поддерживает непрерывную секрецию прогестерона в жёлтом теле до тех пор, пока плацента не начнёт синтезировать прогестерон в количестве, достаточном для нормального течения беременности. Активность ХГТ быстро возрастает, удваиваясь каждые 2–3 дня и достигая пика на 80-й день (80 000–100 000 МЕ/л), затем снижается до 10 000–20 000 МЕ/л и остаётся на этом уровне до конца беременности.

Маркёр беременности . ХГТ продуцируют только клетки синцитиотрофобласта. ХГТ можно обнаружить в сыворотке крови беременной через 8–9 дней после оплодотворения. Количество секретируемого ХГТ напрямую связано с массой цитотрофобласта. На ранних сроках беременности это обстоятельство используют для диагностики нормальной и патологической беременности. Содержание ХГТ в крови и в моче беременной можно определить биологическим, иммунологическим и радиологическим методами. Иммунологические (в том числе радиоиммунологические) тесты специфичнее и чувствительнее биологических методов. При снижении концентрации ХГТ вдвое по сравнению с нормальными значениями можно ожидать нарушения имплантации (например, эктопическую беременность или неразвивающуюся маточную беременность). Повышение концентрации ХГТ выше нормальных значений часто связано с многоплодной беременностью или пузырным заносом.

Стимуляция секреции прогестерона жёлтым телом . Важная роль ХГТ заключается в предотвращении регрессии жёлтого тела, что обычно происходит на 12–14-й дни после овуляции. Значительная структурная гомология ХГТ и ЛГ позволяет ХГТ связываться с рецепторами лютеоцитов для ЛГ. Это приводит к продолжению работы жёлтого тела после 14-го дня от момента овуляции, что обеспечивает прогрессирование беременности. Начиная с 9-й недели, синтез прогестерона осуществляет плацента, масса которой к этому сроку позволяет образовывать прогестерон в количестве, достаточном для пролонгирования беременности (рис. 20–6).

Стимуляция синтеза тестостерона клетками Ляйдига у плода мужского пола. К концу I триместра ХГТ стимулирует гонады плода к синтезу стероидных гормонов, необходимых для дифференцировки внутренних и наружных половых органов.

 Синтез и секрецию ХГТ поддерживает секретируемый цитотрофобластом гонадолиберин .

Прогестерон . В первые 6–8 недель беременности главный источник прогестерона - жёлтое тело (содержание в крови беременной 60 нмоль/л). Начиная со II триместра беременности основным источником прогестерона становится плацента (содержание в крови 150 нмоль/л). Жёлтое тело продолжает синтезировать прогестерон, но в последнем триместре беременности плацента вырабатывает его в 30–40 раз больше. Концентрация прогестерона в крови продолжает увеличиваться вплоть до конца беременности (содержание в крови 500 нмоль/л, примерно в 10 раз больше, чем вне беременности), когда плацента синтезирует 250 мг прогестерона в сутки. Для определения содержания прогестерона используют радиоиммунный метод, а также уровень прегнандиола - метаболита прогестерона - хроматографически.

 Прогестерон способствует децидуализации эндометрия.

 Прогестерон, ингибируя синтез Пг и уменьшая чувствительность к окситоцину, угнетает возбудимость миометрия до наступления родов.

 Прогестерон способствует развитию альвеол молочной железы.

Рис . 20 6 . Содержание гормонов в плазме крови при беременности

Эстрогены . При беременности содержание эстрогенов в крови беременной (эстрон, эстрадиол, эстриол) существенно повышено (рис. 20–6) и превышает значения вне беременности примерно в 30 раз. При этом эстриол составляет 90% всех эстрогенов (1,3 нмоль/л на 7-й неделе беременности, 70 нмоль/л к концу беременности). К концу беременности экскреция эстриола с мочой достигает 25–30 мг/сут. Синтез эстриола происходит при интеграции метаболических процессов беременной, плаценты и плода. Большую часть эстрогенов секретирует плацента, но в ней происходит не синтез этих гормонов de novo , а лишь ароматизация стероидных гормонов, синтезированных надпочечниками плода. Эстриол - показатель нормальной жизнедеятельности плода и нормального функционирования плаценты. С диагностическими целями содержание эстриола определяют в периферической крови и суточной моче. Высокие концентрации эстрогена вызывают увеличение мышечной массы матки, размеров молочной железы, наружных половых органов.

Релаксины - гормоны из семейства инсулинов - в течение беременности оказывают расслабляющее действие на миометрий, перед родами приводят к расширению маточного зева и повышению эластичности тканей лонного сочленения.

Соматомаммотропины 1 и 2 (плацентарные лактогены) образуются в плаценте спустя 3 нед после оплодотворения и могут быть определены в сыворотке крови женщины радиоиммунным методом с 6 нед беременности (35 нг/мл, 10 000 нг/мл в конце беременности). Эффекты соматомаммотропинов, как и эффекты гормона роста, опосредуют соматомедины.

Липолиз . Стимулируют липолиз и увеличивают содержание в плазме свободных жирных кислот (энергетический резерв).

Углеводный обмен . Подавляют утилизацию глюкозы и глюконеогенез у беременной.

Инсулиногенное действие . Повышают в плазме крови содержание инсулина, одновременно снижая его эффекты на клетки–мишени.

Молочные железы . Индуцируют (как и пролактин) дифференцировку секреторных отделов.

Пролактин . Во время беременности существует три потенциальных источника пролактина: передняя доля гипофиза матери и плода, децидуальная ткань матки. У небеременной женщины содержание пролактина в крови находится в диапазоне 8–25 нг/мл, при беременности постепенно возрастает до 100 нг/мл к концу беременности. Основная функция пролактина - подготовка молочных желёз к лактации.

Рилизинг гормоны . В плаценте происходит синтез всех известных гипоталамических рилизинг–гормонов и соматостатина (см. табл. 18–10).